BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32517150)

  • 1. High-Throughput Screening of Free Proline Content in Rice Leaf under Cadmium Stress Using Hyperspectral Imaging with Chemometrics.
    Shen T; Zhang C; Liu F; Wang W; Lu Y; Chen R; He Y
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid detection of cadmium and its distribution in Miscanthus sacchariflorus based on visible and near-infrared hyperspectral imaging.
    Feng X; Chen H; Chen Y; Zhang C; Liu X; Weng H; Xiao S; Nie P; He Y
    Sci Total Environ; 2019 Apr; 659():1021-1031. PubMed ID: 31096318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of multi-disturbance bagging Extreme Learning Machine method for cadmium content prediction of rape leaf using hyperspectral imaging technology.
    Cheng J; Sun J; Yao K; Xu M; Wang S; Fu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121479. PubMed ID: 35696971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods.
    Yu K; Fang S; Zhao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118917. PubMed ID: 32949945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Rapid detection of nitrogen content and distribution in oilseed rape leaves based on hyperspectral imaging].
    Zhang XL; Liu F; Nie PC; He Y; Bao YD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2513-8. PubMed ID: 25532355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response mechanism and rapid detection of phenotypic information in rice root under heavy metal stress.
    Wang W; Man Z; Li X; Chen R; You Z; Pan T; Dai X; Xiao H; Liu F
    J Hazard Mater; 2023 May; 449():131010. PubMed ID: 36801724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nondestructive testing and visualization of compound heavy metals in lettuce leaves using fluorescence hyperspectral imaging.
    Zhou X; Zhao C; Sun J; Yao K; Xu M; Cheng J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122337. PubMed ID: 36680832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination and Visualization of Peimine and Peiminine Content in Fritillaria thunbergii Bulbi Treated by Sulfur Fumigation Using Hyperspectral Imaging with Chemometrics.
    He J; He Y; Zhang AC
    Molecules; 2017 Aug; 22(9):. PubMed ID: 28832506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research and analysis of cadmium residue in tomato leaves based on WT-LSSVR and Vis-NIR hyperspectral imaging.
    Jun S; Xin Z; Xiaohong W; Bing L; Chunxia D; Jifeng S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():215-221. PubMed ID: 30641361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral technique combined with stacking and blending ensemble learning method for detection of cadmium content in oilseed rape leaves.
    Cheng J; Sun J; Yao K; Xu M; Wang S; Fu L
    J Sci Food Agric; 2023 Mar; 103(5):2690-2699. PubMed ID: 36479694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging.
    Zhao HT; Feng YZ; Chen W; Jia GF
    Meat Sci; 2019 May; 151():75-81. PubMed ID: 30716565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing a New Spectral Index for Detecting Cadmium-Induced Stress in Rice on a Regional Scale.
    Wu C; Liu M; Liu X; Wang T; Wang L
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31795501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of cadmium concentration in brown rice before harvest by hyperspectral remote sensing.
    Zhou W; Zhang J; Zou M; Liu X; Du X; Wang Q; Liu Y; Liu Y; Li J
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1848-1856. PubMed ID: 30456622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-destructive determination of Malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging.
    Kong W; Liu F; Zhang C; Zhang J; Feng H
    Sci Rep; 2016 Oct; 6():35393. PubMed ID: 27739491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying cadmium and lead co-accumulation from living rice blade spectrum.
    Zhang S; Fei T; Chen Y; Yang J; Qu R; Xu J; Xiao X; Cheng X; Hu Z; Zheng X; Zhao D
    Environ Pollut; 2023 Dec; 338():122618. PubMed ID: 37757932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology].
    Li XL; Yi SL; He SL; Lü Q; Xie RJ; Zheng YQ; Deng L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2639-43. PubMed ID: 26669182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the Classification Method of Rice Leaf Blast Levels Based on Fusion Features and Adaptive-Weight Immune Particle Swarm Optimization Extreme Learning Machine Algorithm.
    Zhao D; Feng S; Cao Y; Yu F; Guan Q; Li J; Zhang G; Xu T
    Front Plant Sci; 2022; 13():879668. PubMed ID: 35599890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of Using Rice Leaves Hyperspectral Data to Estimate CaCl
    Zhou W; Zhang J; Zou M; Liu X; Du X; Wang Q; Liu Y; Liu Y; Li J
    Sci Rep; 2019 Nov; 9(1):16084. PubMed ID: 31695089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of
    Kong W; Zhang C; Cao F; Liu F; Luo S; Tang Y; He Y
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.