These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 32517183)
1. Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Bento-Oliveira A; Santos FC; Marquês JT; Paulo PMR; Korte T; Herrmann A; Marinho HS; de Almeida RFM Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32517183 [TBL] [Abstract][Full Text] [Related]
2. Protein sorting in the late Golgi of Saccharomyces cerevisiae does not require mannosylated sphingolipids. Lisman Q; Pomorski T; Vogelzangs C; Urli-Stam D; de Cocq van Delwijnen W; Holthuis JC J Biol Chem; 2004 Jan; 279(2):1020-9. PubMed ID: 14583628 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of sphingolipids with very long chain fatty acids but not ergosterol is required for routing of newly synthesized plasma membrane ATPase to the cell surface of yeast. Gaigg B; Timischl B; Corbino L; Schneiter R J Biol Chem; 2005 Jun; 280(23):22515-22. PubMed ID: 15817474 [TBL] [Abstract][Full Text] [Related]
4. Gel domains in the plasma membrane of Saccharomyces cerevisiae: highly ordered, ergosterol-free, and sphingolipid-enriched lipid rafts. Aresta-Branco F; Cordeiro AM; Marinho HS; Cyrne L; Antunes F; de Almeida RF J Biol Chem; 2011 Feb; 286(7):5043-54. PubMed ID: 21127065 [TBL] [Abstract][Full Text] [Related]
6. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase. Tani M; Toume M Microbiology (Reading); 2015 Dec; 161(12):2369-83. PubMed ID: 26404656 [TBL] [Abstract][Full Text] [Related]
7. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Malínská K; Malínský J; Opekarová M; Tanner W Mol Biol Cell; 2003 Nov; 14(11):4427-36. PubMed ID: 14551254 [TBL] [Abstract][Full Text] [Related]
8. Sphingolipid levels crucially modulate lateral microdomain organization of plasma membrane in living yeast. Vecer J; Vesela P; Malinsky J; Herman P FEBS Lett; 2014 Jan; 588(3):443-9. PubMed ID: 24333335 [TBL] [Abstract][Full Text] [Related]
9. Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast. Gaigg B; Toulmay A; Schneiter R J Biol Chem; 2006 Nov; 281(45):34135-45. PubMed ID: 16980694 [TBL] [Abstract][Full Text] [Related]
10. Lactoferrin perturbs lipid rafts and requires integrity of Pma1p-lipid rafts association to exert its antifungal activity against Saccharomyces cerevisiae. Santos-Pereira C; Andrés MT; Chaves SR; Fierro JF; Gerós H; Manon S; Rodrigues LR; Côrte-Real M Int J Biol Macromol; 2021 Feb; 171():343-357. PubMed ID: 33421469 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. Dickson RC; Nagiec EE; Wells GB; Nagiec MM; Lester RL J Biol Chem; 1997 Nov; 272(47):29620-5. PubMed ID: 9368028 [TBL] [Abstract][Full Text] [Related]
13. Level of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. Aerts AM; François IE; Bammens L; Cammue BP; Smets B; Winderickx J; Accardo S; De Vos DE; Thevissen K FEBS Lett; 2006 Mar; 580(7):1903-7. PubMed ID: 16527275 [TBL] [Abstract][Full Text] [Related]
14. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. Malinska K; Malinsky J; Opekarova M; Tanner W J Cell Sci; 2004 Dec; 117(Pt 25):6031-41. PubMed ID: 15536122 [TBL] [Abstract][Full Text] [Related]
15. Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Frisz JF; Lou K; Klitzing HA; Hanafin WP; Lizunov V; Wilson RL; Carpenter KJ; Kim R; Hutcheon ID; Zimmerberg J; Weber PK; Kraft ML Proc Natl Acad Sci U S A; 2013 Feb; 110(8):E613-22. PubMed ID: 23359681 [TBL] [Abstract][Full Text] [Related]
16. Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence Spectroscopy. Sousa C; Santos FC; Bento-Oliveira A; Mestre B; Silva LC; de Almeida RFM Methods Mol Biol; 2021; 2187():247-269. PubMed ID: 32770511 [TBL] [Abstract][Full Text] [Related]
17. Generic sorting of raft lipids into secretory vesicles in yeast. Surma MA; Klose C; Klemm RW; Ejsing CS; Simons K Traffic; 2011 Sep; 12(9):1139-47. PubMed ID: 21575114 [TBL] [Abstract][Full Text] [Related]
18. The yeast O-acyltransferase Gup1p interferes in lipid metabolism with direct consequences on the sphingolipid-sterol-ordered domains integrity/assembly. Ferreira C; Lucas C Biochim Biophys Acta; 2008 Nov; 1778(11):2648-53. PubMed ID: 18786505 [TBL] [Abstract][Full Text] [Related]
19. Characterizing the sphingolipid signaling pathway that remediates defects associated with loss of the yeast amphiphysin-like orthologs, Rvs161p and Rvs167p. Germann M; Swain E; Bergman L; Nickels JT J Biol Chem; 2005 Feb; 280(6):4270-8. PubMed ID: 15561700 [TBL] [Abstract][Full Text] [Related]
20. Intracellular transport of inositol-containing sphingolipids in the yeast, Saccharomyces cerevisiae. Hechtberger P; Daum G FEBS Lett; 1995 Jun; 367(2):201-4. PubMed ID: 7796921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]