These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32517226)

  • 41. Wavelet Analysis and Self-Similarity of Photoplethysmography Signals for HRV Estimation and Quality Assessment.
    Neshitov A; Tyapochkin K; Smorodnikova E; Pravdin P
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696011
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wrist Photoplethysmography Signal Quality Assessment for Reliable Heart Rate Estimate and Morphological Analysis.
    Moscato S; Giudice SL; Massaro G; Chiari L
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957395
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intelligent Detection Method of Atrial Fibrillation by CEPNCC-BiLSTM Based on Long-Term Photoplethysmography Data.
    Wang Z; Fan J; Dai Y; Zheng H; Wang P; Chen H; Wu Z
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204938
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A motion-tolerant approach for monitoring SpO
    Fan F; Yan Y; Tang Y; Zhang H
    Comput Biol Med; 2017 Dec; 91():291-305. PubMed ID: 29102826
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Double sensor complementary placement method to reduce motion artifacts in PPG using fast independent component analysis.
    Lo FP; Meng MQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3179-3182. PubMed ID: 28268983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Objective Pain Assessment Using Wrist-based PPG Signals: A Respiratory Rate Based Method.
    Cao R; Aqajari SAH; Kasaeyan Naeini E; Rahmani AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1164-1167. PubMed ID: 34891494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PPG Signal Reconstruction Using Deep Convolutional Generative Adversarial Network.
    Wang Y; Azimi I; Kazemi K; Rahmani AM; Liljeberg P
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3387-3391. PubMed ID: 36086184
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity.
    Jarchi D; Casson AJ
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2042-2053. PubMed ID: 28212075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wearable In-Ear PPG: Detailed Respiratory Variations Enable Classification of COPD.
    Davies HJ; Bachtiger P; Williams I; Molyneaux PL; Peters NS; Mandic DP
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2390-2400. PubMed ID: 35077352
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection of respiratory arousals using photoplethysmography (PPG) signal in sleep apnea patients.
    Karmakar C; Khandoker A; Penzel T; Schöbel C; Palaniswami M
    IEEE J Biomed Health Inform; 2014 May; 18(3):1065-73. PubMed ID: 24108482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Motion Artifact Removal for PPG Signals based on Accurate Fundamental Frequency Estimation and Notch Filtering.
    Zhang Q; Xie Q; Wang M; Wang G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2965-2968. PubMed ID: 30441021
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of Motion Artifacts in Photoplethysmograph Sensors during Intensive Exercise for Accurate Heart Rate Calculation Based on Frequency Estimation and Notch Filtering.
    Wang M; Li Z; Zhang Q; Wang G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357674
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Motion Artifact Reduction in Wearable Photoplethysmography Based on Multi-Channel Sensors with Multiple Wavelengths.
    Lee J; Kim M; Park HK; Kim IY
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Real-time estimation of respiratory rate from a photoplethysmogram using an adaptive lattice notch filter.
    Park C; Lee B
    Biomed Eng Online; 2014 Dec; 13():170. PubMed ID: 25518918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Motion Artifact Reduction In Photoplethysmography For Reliable Signal Selection.
    Mao R; Tweardy M; Wegerich SW; Goergen CJ; Wodicka GR; Zhu F
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5625-5630. PubMed ID: 34892399
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hypertension assessment based on feature extraction using a photoplethysmography signal and its derivatives.
    Yao LP; Liu WZ
    Physiol Meas; 2021 Jun; 42(6):. PubMed ID: 32659754
    [No Abstract]   [Full Text] [Related]  

  • 57. Filtering-induced time shifts in photoplethysmography pulse features measured at different body sites: the importance of filter definition and standardization.
    Liu H; Allen J; Khalid SG; Chen F; Zheng D
    Physiol Meas; 2021 Jul; 42(7):. PubMed ID: 34111855
    [No Abstract]   [Full Text] [Related]  

  • 58. Estimation of heart rate from photoplethysmography during physical exercise using Wiener filtering and the phase vocoder.
    Temko A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1500-3. PubMed ID: 26736555
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of cardiovascular function in diabetic patients using EEMD-ICA fusion multi-scale percussion entropy.
    Li MM; Pan JX; Wang JH; Hu ZL; Zhao J; Wei HC
    Technol Health Care; 2024; 32(2):809-821. PubMed ID: 37458054
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A human ECG identification system based on ensemble empirical mode decomposition.
    Zhao Z; Yang L; Chen D; Luo Y
    Sensors (Basel); 2013 May; 13(5):6832-64. PubMed ID: 23698274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.