These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32517275)

  • 1. All Single-Mode-Fiber Supercontinuum Source Setup for Monitoring of Multiple Gases Applications.
    Martin-Vela JA; Gallegos-Arellano E; Sierra-Hernández JM; Estudillo-Ayala JM; Jauregui-Vázquez D; Avila-Garcia MS; Ramírez-Gasca H; Rojas-Laguna R
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-power, ultra-broadband supercontinuum light generated in a single-mode fiber pumped with a nanosecond passively Q-switched microchip laser.
    Huang X; Pan Z; Hu A; Dong J
    Appl Opt; 2020 Apr; 59(10):3019-3025. PubMed ID: 32400578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minute Concentration Measurements of Simple Hydrocarbon Species Using Supercontinuum Laser Absorption Spectroscopy.
    Yoo J; Traina N; Halloran M; Lee T
    Appl Spectrosc; 2016 Jun; 70(6):1063-71. PubMed ID: 27091905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber.
    Gao W; Liao M; Yang L; Yan X; Suzuki T; Ohishi Y
    Appl Opt; 2012 Mar; 51(8):1071-5. PubMed ID: 22410985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications.
    Yin K; Zhu R; Zhang B; Jiang T; Chen S; Hou J
    Opt Express; 2016 Sep; 24(18):20010-20. PubMed ID: 27607609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation.
    Nicholson J; Yablon A; Westbrook P; Feder K; Yan M
    Opt Express; 2004 Jun; 12(13):3025-34. PubMed ID: 19483820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source.
    Langridge JM; Laurila T; Watt RS; Jones RL; Kaminski CF; Hult J
    Opt Express; 2008 Jul; 16(14):10178-88. PubMed ID: 18607425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-flat, low-noise, and linearly polarized fiber supercontinuum source covering 670-1390  nm.
    Genier E; Grelet S; Engelsholm RD; Bowen P; Moselund PM; Bang O; Dudley JM; Sylvestre T
    Opt Lett; 2021 Apr; 46(8):1820-1823. PubMed ID: 33857078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity enhanced spectroscopy of high-temperature H(2)o in the near-infrared using a supercontinuum light source.
    Watt RS; Laurila T; Kaminski CF; Hult J
    Appl Spectrosc; 2009 Dec; 63(12):1389-95. PubMed ID: 20030985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercontinuum and gas cell in a single microstructured fiber.
    Ritari T; Genty G; Ludvigsen H
    Opt Lett; 2005 Dec; 30(24):3380-2. PubMed ID: 16389838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source.
    Sych Y; Engelbrecht R; Schmauss B; Kozlov D; Seeger T; Leipertz A
    Opt Express; 2010 Oct; 18(22):22762-71. PubMed ID: 21164614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier.
    Geng J; Wang Q; Jiang S
    Appl Opt; 2012 Mar; 51(7):834-40. PubMed ID: 22410883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High efficiency supercontinuum generation using ultra-long Raman fiber cavities.
    El-Taher AE; Ania-Castañón JD; Karalekas V; Harper P
    Opt Express; 2009 Sep; 17(20):17909-15. PubMed ID: 19907579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications.
    Werblinski T; Engel SR; Engelbrecht R; Zigan L; Will S
    Opt Express; 2013 Jun; 21(11):13656-67. PubMed ID: 23736618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 15.2  W spectrally flat all-fiber supercontinuum laser source with >1  W power beyond 3.8  μm.
    Yin K; Zhang B; Yang L; Hou J
    Opt Lett; 2017 Jun; 42(12):2334-2337. PubMed ID: 28614345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design optimisation for obtaining flat, high power supercontinuum source over C + L band.
    Kakkar C; Thyagarajan K
    Opt Express; 2006 Oct; 14(22):10292-7. PubMed ID: 19529425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over 100 W ultra-flat broadband short-wave infrared supercontinuum generation in a thulium-doped fiber amplifier.
    Yin K; Li L; Yao J; Zhang B; Hou J
    Opt Lett; 2015 Oct; 40(20):4787-90. PubMed ID: 26469620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 67.9  W high-power white supercontinuum all-fiber laser source.
    Sun C; Ge T; Li S; An N; Wang Z
    Appl Opt; 2016 May; 55(14):3746-50. PubMed ID: 27168286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability Analysis of the Fluorescent Tracer 1-Methylnaphthalene for IC Engine Applications by Supercontinuum Laser Absorption Spectroscopy.
    Fendt P; Retzer U; Ulrich H; Will S; Zigan L
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of octave-spanning supercontinuum with 1550-nm amplified diode-laser pulses and a dispersion-shifted fiber.
    Moon S; Kim DY
    Opt Express; 2006 Jan; 14(1):270-8. PubMed ID: 19503340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.