BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32517296)

  • 1. Quantitative Phosphoproteomics Reveals Cell Alignment and Mitochondrial Length Change under Cyclic Stretching in Lung Cells.
    Wang WH; Hsu CL; Huang HC; Juan HF
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32517296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress.
    Yu B; Li J; Koh J; Dufresne C; Yang N; Qi S; Zhang Y; Ma C; Duong BV; Chen S; Li H
    J Proteomics; 2016 Jun; 143():286-297. PubMed ID: 27233743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells.
    Alli-Shaik A; Wee S; Lim LHK; Gunaratne J
    Breast Cancer Res; 2017 Dec; 19(1):132. PubMed ID: 29233185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal changes and the system of regulation of alkaline phosphatase activity in human periodontal ligament cells induced by mechanical stress.
    Chiba M; Mitani H
    Cell Biochem Funct; 2004; 22(4):249-56. PubMed ID: 15248185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leukotrienes and tyrosine phosphorylation mediate stretching-induced actin cytoskeletal remodeling in endothelial cells.
    Wang JH; Goldschmidt-Clermont P; Moldovan N; Yin FC
    Cell Motil Cytoskeleton; 2000 Jun; 46(2):137-45. PubMed ID: 10891859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective.
    Padrão AI; Vitorino R; Duarte JA; Ferreira R; Amado F
    J Proteome Res; 2013 Oct; 12(10):4257-67. PubMed ID: 23964737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of different cyclic mechanical stretching loads on human tenocytic cytoskeleton in vitro].
    Deng YS; Tang KL; Xie MM; Cao HH; Chen L; Chang DH; Dong SW; Tao X; Li H; Yang HF; Xu JZ
    Zhonghua Yi Xue Za Zhi; 2011 Jul; 91(25):1780-5. PubMed ID: 22093739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studying mechanisms of cAMP and cyclic nucleotide phosphodiesterase signaling in Leydig cell function with phosphoproteomics.
    Golkowski M; Shimizu-Albergine M; Suh HW; Beavo JA; Ong SE
    Cell Signal; 2016 Jul; 28(7):764-78. PubMed ID: 26643407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteome profile of human lung cancer cell line A549.
    Yu G; Xiao CL; Lu CH; Jia HT; Ge F; Wang W; Yin XF; Jia HL; He JX; He QY
    Mol Biosyst; 2011 Feb; 7(2):472-9. PubMed ID: 21060948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of endothelial cell reorientation in response to cyclic mechanical stretching.
    Wang JH; Goldschmidt-Clermont P; Wille J; Yin FC
    J Biomech; 2001 Dec; 34(12):1563-72. PubMed ID: 11716858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial phosphoproteomics of mammalian tissues.
    Kruse R; Højlund K
    Mitochondrion; 2017 Mar; 33():45-57. PubMed ID: 27521611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Birds with One Stone: Parallel Quantification of Proteome and Phosphoproteome Using iTRAQ.
    Solari FA; Kollipara L; Sickmann A; Zahedi RP
    Methods Mol Biol; 2016; 1394():25-41. PubMed ID: 26700039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators.
    Rabiee A; Schwämmle V; Sidoli S; Dai J; Rogowska-Wrzesinska A; Mandrup S; Jensen ON
    Proteomics; 2017 Mar; 17(6):. PubMed ID: 27717184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells.
    Verano-Braga T; Schwämmle V; Sylvester M; Passos-Silva DG; Peluso AA; Etelvino GM; Santos RA; Roepstorff P
    J Proteome Res; 2012 Jun; 11(6):3370-81. PubMed ID: 22497526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics of chondrocytes with special reference to phosphorylation changes of proteins in stretched human chondrosarcoma cells.
    Piltti J; Häyrinen J; Karjalainen HM; Lammi MJ
    Biorheology; 2008; 45(3-4):323-35. PubMed ID: 18836233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways regulated by site-specific phosphorylation of Keratin-8 in skin squamous cell carcinoma derived cell line.
    Tiwari R; Sahu I; Soni BL; Sathe GJ; Datta KK; Thapa P; Sinha S; Vadivel CK; Dhaka B; Gowda H; Vaidya MM
    Proteomics; 2017 Apr; 17(7):. PubMed ID: 28176443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeletal tension regulates both expression and degradation of h2-calponin in lung alveolar cells.
    Hossain MM; Smith PG; Wu K; Jin JP
    Biochemistry; 2006 Dec; 45(51):15670-83. PubMed ID: 17176089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative global phosphoproteomics of human umbilical vein endothelial cells after activation of the Rap signaling pathway.
    Meijer LA; Zhou H; Chan OY; Altelaar AF; Hennrich ML; Mohammed S; Bos JL; Heck AJ
    Mol Biosyst; 2013 Apr; 9(4):732-49. PubMed ID: 23403867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise morphological changes and cytoskeletal reorganization of human mesenchymal stem cells treated by short-time cyclic uniaxial stretch.
    Parandakh A; Tafazzoli-Shadpour M; Khani MM
    In Vitro Cell Dev Biol Anim; 2017 Jun; 53(6):547-553. PubMed ID: 28205142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Phosphoproteomics Revealed Glucose-Stimulated Responses of Islet Associated with Insulin Secretion.
    Li J; Li Q; Tang J; Xia F; Wu J; Zeng R
    J Proteome Res; 2015 Nov; 14(11):4635-46. PubMed ID: 26437020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.