These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32517325)
1. Use of Discrete Wavelet Transform to Assess Impedance Fluctuations Obtained from Cellular Micromotion. Tung TH; Wang SH; Huang CC; Su TY; Lo CM Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517325 [TBL] [Abstract][Full Text] [Related]
2. Assessing in vitro cytotoxicity of cell micromotion by Hilbert-Huang transform. Lai YT; Lo CM Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3200-3. PubMed ID: 25570671 [TBL] [Abstract][Full Text] [Related]
3. Application of ECIS to Assess FCCP-Induced Changes of MSC Micromotion and Wound Healing Migration. Chiu SP; Lee YW; Wu LY; Tung TH; Gomez S; Lo CM; Wang JY Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330904 [TBL] [Abstract][Full Text] [Related]
4. Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Opp D; Wafula B; Lim J; Huang E; Lo JC; Lo CM Biosens Bioelectron; 2009 Apr; 24(8):2625-9. PubMed ID: 19230649 [TBL] [Abstract][Full Text] [Related]
5. Detecting Effects of Low Levels of FCCP on Stem Cell Micromotion and Wound-Healing Migration by Time-Series Capacitance Measurement. Wang SH; Tung TH; Chiu SP; Chou HY; Hung YH; Lai YT; Lee YW; Lee SP; Lo CM Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923058 [TBL] [Abstract][Full Text] [Related]
6. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells. Das D; Shiladitya K; Biswas K; Dutta PK; Parekh A; Mandal M; Das S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062702. PubMed ID: 26764722 [TBL] [Abstract][Full Text] [Related]
7. Monitoring of ovarian cancer cell invasion in real time with frequency-dependent impedance measurement. Lo CM; Lo JC; Sato PY; Yeung TL; Mok SC; Yip KP Am J Physiol Cell Physiol; 2016 Dec; 311(6):C1040-C1047. PubMed ID: 27784677 [TBL] [Abstract][Full Text] [Related]
8. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes. Casson AJ Sensors (Basel); 2015 Dec; 15(12):31914-29. PubMed ID: 26694414 [TBL] [Abstract][Full Text] [Related]
9. Analysis of pattern electroretinogram signals of early primary open-angle glaucoma in discrete wavelet transform coefficients domain. Hassankarimi H; Noori SMR; Jafarzadehpour E; Yazdani S; Radinmehr F Int Ophthalmol; 2019 Oct; 39(10):2373-2383. PubMed ID: 30725244 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity and Validation of Porous Membrane Electrical Cell Substrate Impedance Spectroscopy (PM-ECIS) for Measuring Endothelial Barrier Properties. Ugodnikov A; Chebotarev O; Persson H; Simmons CA ACS Biomater Sci Eng; 2024 Aug; 10(8):5327-5335. PubMed ID: 38943620 [TBL] [Abstract][Full Text] [Related]
11. A computational modeling and analysis in cell biological dynamics using electric cell-substrate impedance sensing (ECIS). Chen SW; Yang JM; Yang JH; Yang SJ; Wang JS Biosens Bioelectron; 2012 Mar; 33(1):196-203. PubMed ID: 22261483 [TBL] [Abstract][Full Text] [Related]
12. Discrete wavelet transform coefficients for emotion recognition from EEG signals. Yohanes RE; Ser W; Huang GB Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2251-4. PubMed ID: 23366371 [TBL] [Abstract][Full Text] [Related]
13. Application of 1-D discrete wavelet transform based compressed sensing matrices for speech compression. Parkale YV; Nalbalwar SL Springerplus; 2016; 5(1):2048. PubMed ID: 27995025 [TBL] [Abstract][Full Text] [Related]
14. Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion. Lovelady DC; Friedman J; Patel S; Rabson DA; Lo CM Biosens Bioelectron; 2009 Mar; 24(7):2250-4. PubMed ID: 19026529 [TBL] [Abstract][Full Text] [Related]
15. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility. Szulcek R; Bogaard HJ; van Nieuw Amerongen GP J Vis Exp; 2014 Mar; (85):. PubMed ID: 24747269 [TBL] [Abstract][Full Text] [Related]
16. Phase Function Effects on Identification of Terahertz Spectral Signatures Using the Discrete Wavelet Transform. Khani ME; Winebrenner DP; Arbab MH IEEE Trans Terahertz Sci Technol; 2020 Nov; 10(6):656-666. PubMed ID: 33738125 [TBL] [Abstract][Full Text] [Related]
17. Electric Cell-Substrate Impedance Sensing as a Tool to Characterize Wound Healing Dynamics. Gallemí-Pérez A; Tarantola M Methods Mol Biol; 2024; 2828():119-145. PubMed ID: 39147975 [TBL] [Abstract][Full Text] [Related]
18. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG. Chen D; Wan S; Xiang J; Bao FS PLoS One; 2017; 12(3):e0173138. PubMed ID: 28278203 [TBL] [Abstract][Full Text] [Related]
19. Perception of power quality disturbances using Fourier, Short-Time Fourier, continuous and discrete wavelet transforms. Priyadarshini MS; Bajaj M; Prokop L; Berhanu M Sci Rep; 2024 Feb; 14(1):3443. PubMed ID: 38341467 [TBL] [Abstract][Full Text] [Related]
20. Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level. Susloparova A; Koppenhöfer D; Law JK; Vu XT; Ingebrandt S Lab Chip; 2015 Feb; 15(3):668-79. PubMed ID: 25412224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]