These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 32517890)
1. Slow pyrolysis of municipal solid waste (MSW): A review. Lu JS; Chang Y; Poon CS; Lee DJ Bioresour Technol; 2020 Sep; 312():123615. PubMed ID: 32517890 [TBL] [Abstract][Full Text] [Related]
2. Pyrolysis synergy of municipal solid waste (MSW): A review. Lee DJ; Lu JS; Chang JS Bioresour Technol; 2020 Dec; 318():123912. PubMed ID: 32741699 [TBL] [Abstract][Full Text] [Related]
3. Pyrolysis technologies for municipal solid waste: a review. Chen D; Yin L; Wang H; He P Waste Manag; 2014 Dec; 34(12):2466-86. PubMed ID: 25256662 [TBL] [Abstract][Full Text] [Related]
4. Gasification of municipal solid waste (MSW) as a cleaner final disposal route: A mini-review. Lee DJ Bioresour Technol; 2022 Jan; 344(Pt A):126217. PubMed ID: 34715334 [TBL] [Abstract][Full Text] [Related]
5. Reprint of: Pyrolysis technologies for municipal solid waste: a review. Chen D; Yin L; Wang H; He P Waste Manag; 2015 Mar; 37():116-36. PubMed ID: 25700606 [TBL] [Abstract][Full Text] [Related]
6. Simulation analysis and ternary diagram of municipal solid waste pyrolysis and gasification based on the equilibrium model. Deng N; Zhang A; Zhang Q; He G; Cui W; Chen G; Song C Bioresour Technol; 2017 Jul; 235():371-379. PubMed ID: 28384590 [TBL] [Abstract][Full Text] [Related]
7. Assessment of carbon footprint emissions and environmental concerns of solid waste treatment and disposal techniques; case study of Malaysia. Malakahmad A; Abualqumboz MS; Kutty SRM; Abunama TJ Waste Manag; 2017 Dec; 70():282-292. PubMed ID: 28935377 [TBL] [Abstract][Full Text] [Related]
8. A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels. Veses A; Sanahuja-Parejo O; Callén MS; Murillo R; García T Waste Manag; 2020 Jan; 101():171-179. PubMed ID: 31614284 [TBL] [Abstract][Full Text] [Related]
9. Assessment of pyrolysis potential of Indian municipal solid waste and legacy waste via physicochemical and thermochemical characterization. Saikia S; Kalamdhad AS Bioresour Technol; 2024 Feb; 394():130289. PubMed ID: 38181997 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic digestion of municipal solid waste: Energy and carbon emission footprint. Fan YV; Klemeš JJ; Lee CT; Perry S J Environ Manage; 2018 Oct; 223():888-897. PubMed ID: 29996113 [TBL] [Abstract][Full Text] [Related]
11. Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution. Agar DA; Kwapinska M; Leahy JJ Environ Sci Pollut Res Int; 2018 Dec; 25(36):35874-35882. PubMed ID: 29484618 [TBL] [Abstract][Full Text] [Related]
12. Suitability of municipal solid waste in African cities for thermochemical waste-to-energy conversion: The case of Harare Metropolitan City, Zimbabwe. Makarichi L; Kan R; Jutidamrongphan W; Techato KA Waste Manag Res; 2019 Jan; 37(1):83-94. PubMed ID: 30355247 [TBL] [Abstract][Full Text] [Related]
13. Modeling and comparative assessment of municipal solid waste gasification for energy production. Arafat HA; Jijakli K Waste Manag; 2013 Aug; 33(8):1704-13. PubMed ID: 23726119 [TBL] [Abstract][Full Text] [Related]
14. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis. Fang S; Yu Z; Lin Y; Lin Y; Fan Y; Liao Y; Ma X Bioresour Technol; 2016 Jun; 209():265-72. PubMed ID: 26985626 [TBL] [Abstract][Full Text] [Related]
15. Distribution of gasification products and emission of heavy metals and dioxins from municipal solid waste at the low temperature pyrolysis stage. Feng S; Feng YH; Ji LJ; Zhan MX; Wang JQ; Xu X Environ Sci Pollut Res Int; 2024 Mar; 31(11):16388-16400. PubMed ID: 38315338 [TBL] [Abstract][Full Text] [Related]
16. Pyrolysis, a recovery solution to reduce landfilling of residual organic waste generated from mixed municipal waste. Graça J; Kwapinska M; Murphy B; Duggan T; Leahy JJ; Kelleher B Environ Sci Pollut Res Int; 2024 May; 31(21):30676-30687. PubMed ID: 38613758 [TBL] [Abstract][Full Text] [Related]
17. Effects of various additives on the pyrolysis characteristics of municipal solid waste. Song Q; Zhao HY; Xing WL; Song LH; Yang L; Yang D; Shu X Waste Manag; 2018 Aug; 78():621-629. PubMed ID: 32559953 [TBL] [Abstract][Full Text] [Related]
18. Prediction of syngas quality for two-stage gasification of selected waste feedstocks. De Filippis P; Borgianni C; Paolucci M; Pochetti F Waste Manag; 2004; 24(6):633-9. PubMed ID: 15219922 [TBL] [Abstract][Full Text] [Related]
19. Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/gasification unit with catalyst based on clay minerals. Šuhaj P; Haydary J; Husár J; Steltenpohl P; Šupa I Waste Manag; 2019 Feb; 85():1-10. PubMed ID: 30803562 [TBL] [Abstract][Full Text] [Related]
20. Influence of particle size on pyrolysis and gasification performance of municipal solid waste in a fixed bed reactor. Luo S; Xiao B; Hu Z; Liu S; Guan Y; Cai L Bioresour Technol; 2010 Aug; 101(16):6517-20. PubMed ID: 20363619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]