These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32517913)

  • 21. Bioactive amines in sorghum: method optimisation and influence of line, tannin and hydric stress.
    Paiva CL; Evangelista WP; Queiroz VA; Glória MB
    Food Chem; 2015 Apr; 173():224-30. PubMed ID: 25466016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench).
    Kumar T; Dweikat I; Sato S; Ge Z; Nersesian N; Chen H; Elthon T; Bean S; Ioerger BP; Tilley M; Clemente T
    Plant Biotechnol J; 2012 Jun; 10(5):533-44. PubMed ID: 22353344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-knockout of β-kafirin in sorghum does not recapitulate the grain quality of natural mutants.
    Massel K; Hintzsche J; Restall J; Kerr ED; Schulz BL; Godwin ID
    Planta; 2022 Dec; 257(1):8. PubMed ID: 36481955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Properties of heat-treated sorghum and maize meal and their prolamin proteins.
    Emmambux MN; Taylor JR
    J Agric Food Chem; 2009 Feb; 57(3):1045-50. PubMed ID: 19143536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of protein digestion on in vitro digestibility of starch in sorghum differing in endosperm hardness and flour particle size.
    Xu X; Bean S; Wu X; Shi YC
    Food Chem; 2022 Jul; 383():132635. PubMed ID: 35413766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds.
    Sęczyk Ł; Sugier D; Świeca M; Gawlik-Dziki U
    Food Chem; 2021 May; 344():128581. PubMed ID: 33199124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alteration of kafirin and kafirin film structure by heating with microwave energy and tannin complexation.
    Byaruhanga YB; Emmambux MN; Belton PS; Wellner N; Ng KG; Taylor JR
    J Agric Food Chem; 2006 Jun; 54(12):4198-207. PubMed ID: 16756347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lactic fermentation of grain sorghum: effect of variety and pretreatment on the production of lactic acid and biomass.
    Diaz Gonzalez D; Morawicki R
    J Food Sci Technol; 2022 Mar; 59(3):1221-1229. PubMed ID: 35185217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Letting wine polyphenols functional: Estimation of wine polyphenols bioaccessibility under different drinking amount and drinking patterns.
    Sun X; Cheng X; Zhang J; Ju Y; Que Z; Liao X; Lao F; Fang Y; Ma T
    Food Res Int; 2020 Jan; 127():108704. PubMed ID: 31882093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nixtamalized flour from quality protein maize (Zea mays L). optimization of alkaline processing.
    Milán-Carrillo J; Gutiérrez-Dorado R; Cuevas-Rodríguez EO; Garzón-Tiznado JA; Reyes-Moreno C
    Plant Foods Hum Nutr; 2004; 59(1):35-44. PubMed ID: 15675150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of cooking, pH and polyphenol level on carbohydrate composition and nutritional quality of a sorghum (Sorghum bicolor (L.) Moench) food, ugali.
    Bach Knudsen KE; Munck L; Eggum BO
    Br J Nutr; 1988 Jan; 59(1):31-47. PubMed ID: 3345303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tocochromanols and carotenoids in sorghum (Sorghum bicolor L.): diversity and stability to the heat treatment.
    Cardoso Lde M; Pinheiro SS; da Silva LL; de Menezes CB; de Carvalho CW; Tardin FD; Queiroz VA; Martino HS; Pinheiro-Sant'Ana HM
    Food Chem; 2015 Apr; 172():900-8. PubMed ID: 25442636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Germination of sorghum grain results in significant changes in paste and texture properties.
    Yi C; Li Y; Ping J
    J Texture Stud; 2017 Oct; 48(5):386-391. PubMed ID: 28967217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro bioaccessibility of Al, Cu, Cd, and Pb following simulated gastro-intestinal digestion and total content of these metals in different Brazilian brands of yerba mate tea.
    Schmite BFP; Bitobrovec A; Hacke ACM; Pereira RP; Weinert PL; Dos Anjos VE
    Food Chem; 2019 May; 281():285-293. PubMed ID: 30658759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variability in tannin content, chemistry and activity in a diverse group of tannin containing sorghum cultivars.
    Kaufman RC; Herald TJ; Bean SR; Wilson JD; Tuinstra MR
    J Sci Food Agric; 2013 Mar; 93(5):1233-41. PubMed ID: 23011944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mineral availability is modified by tannin and phytate content in sorghum flaked breakfast cereals.
    Wu G; Ashton J; Simic A; Fang Z; Johnson SK
    Food Res Int; 2018 Jan; 103():509-514. PubMed ID: 29389641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physicochemical characterisation of kafirins extracted from sorghum grain and dried distillers grain with solubles related to their biomaterial functionality.
    Shah U; Dwivedi D; Hackett M; Al-Salami H; Utikar RP; Blanchard C; Gani A; Rowles MR; Johnson SK
    Sci Rep; 2021 Jul; 11(1):15204. PubMed ID: 34312467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenolic profile and fermentation patterns of different commercial gluten-free pasta during in vitro large intestine fermentation.
    Rocchetti G; Lucini L; Chiodelli G; Giuberti G; Gallo A; Masoero F; Trevisan M
    Food Res Int; 2017 Jul; 97():78-86. PubMed ID: 28578068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing sorghum and wheat whole grain breakfast cereals: Sensorial acceptance and bioactive compound content.
    Anunciação PC; Cardoso LM; Gomes JVP; Della Lucia CM; Carvalho CWP; Galdeano MC; Queiroz VAV; Alfenas RCG; Martino HSD; Pinheiro-Sant'Ana HM
    Food Chem; 2017 Apr; 221():984-989. PubMed ID: 27979303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Outlook: Sorghum as a feed grain for Australian chicken-meat production.
    Selle PH; Moss AF; Truong HH; Khoddami A; Cadogan DJ; Godwin ID; Liu SY
    Anim Nutr; 2018 Mar; 4(1):17-30. PubMed ID: 30167480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.