BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 32517990)

  • 1. Propulsive joint powers track with sensor-derived angular velocity: A potential tool for lab-less gait retraining.
    Hafer JF; Zernicke RF
    J Biomech; 2020 Jun; 106():109821. PubMed ID: 32517990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of age, speed, and step length on lower extremity net joint moments and powers during walking.
    Buddhadev HH; Smiley AL; Martin PE
    Hum Mov Sci; 2020 Jun; 71():102611. PubMed ID: 32452428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of age and physical activity status on redistribution of joint work during walking.
    Buddhadev HH; Martin PE
    Gait Posture; 2016 Oct; 50():131-136. PubMed ID: 27607304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age causes a redistribution of joint torques and powers during gait.
    DeVita P; Hortobagyi T
    J Appl Physiol (1985); 2000 May; 88(5):1804-11. PubMed ID: 10797145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of Measurement for Trailing Limb Angle and Propulsion Force during Gait Using a Magnetic Inertial Measurement Unit.
    Miyazaki T; Kawada M; Nakai Y; Kiyama R; Yone K
    Biomed Res Int; 2019; 2019():8123467. PubMed ID: 31930138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors.
    Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower Extremity Inverse Kinematics Results Differ Between Inertial Measurement Unit- and Marker-Derived Gait Data.
    Hafer JF; Mihy JA; Hunt A; Zernicke RF; Johnson RT
    J Appl Biomech; 2023 Jun; 39(3):133-142. PubMed ID: 37024103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered Walking Neuromechanics in Patients With Chronic Ankle Instability.
    Son SJ; Kim H; Seeley MK; Hopkins JT
    J Athl Train; 2019 Jun; 54(6):684-697. PubMed ID: 31162941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint angular velocity in spastic gait and the influence of muscle-tendon lengthening.
    Granata KP; Abel MF; Damiano DL
    J Bone Joint Surg Am; 2000 Feb; 82(2):174-86. PubMed ID: 10682726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on estimation of planar gait kinematics using minimal inertial measurement units and inverse kinematics.
    Hu X; Soh GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6911-4. PubMed ID: 25571585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting lower limb joint kinematics using wearable motion sensors.
    Findlow A; Goulermas JY; Nester C; Howard D; Kenney LP
    Gait Posture; 2008 Jul; 28(1):120-6. PubMed ID: 18093834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of walking speed on lower-extremity joint powers among elderly adults who exhibit low physical performance.
    Graf A; Judge JO; Ounpuu S; Thelen DG
    Arch Phys Med Rehabil; 2005 Nov; 86(11):2177-83. PubMed ID: 16271567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial Sensor Angular Velocities Reflect Dynamic Knee Loading during Single Limb Loading in Individuals Following Anterior Cruciate Ligament Reconstruction.
    Pratt KA; Sigward SM
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30326570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower limb angular velocity during walking at various speeds.
    Mentiplay BF; Banky M; Clark RA; Kahn MB; Williams G
    Gait Posture; 2018 Sep; 65():190-196. PubMed ID: 30558929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach.
    Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D
    Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of multi-segment foot joint angles during gait using a wearable system.
    Rouhani H; Favre J; Crevoisier X; Aminian K
    J Biomech Eng; 2012 Jun; 134(6):061006. PubMed ID: 22757503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks.
    Senanayake D; Halgamuge S; Ackland DC
    J Biomech; 2021 Aug; 125():110552. PubMed ID: 34237661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of load carriage and footwear on lower extremity kinetics and kinematics during overground walking.
    Dames KD; Smith JD
    Gait Posture; 2016 Oct; 50():207-211. PubMed ID: 27649512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.