These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32517996)

  • 1. Hand-rung forces after a ladder climbing perturbation.
    Pliner EM; Novak AC; Beschorner KE
    J Biomech; 2020 Jun; 106():109790. PubMed ID: 32517996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of upper body strength, hand placement and foot placement on ladder fall severity.
    Pliner EM; Seo NJ; Ramakrishnan V; Beschorner KE
    Gait Posture; 2019 Feb; 68():23-29. PubMed ID: 30439684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selected movement and force pattern differences in rail- and rung-climbing of fire apparatus aerial ladders at 52.5° slope.
    Fu QA; Simeonov P; Hsiao H; Woolley C; Armstrong TJ
    Appl Ergon; 2022 Feb; 99():103639. PubMed ID: 34753097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of foot placement, hand positioning, age and climbing biodynamics on ladder slip outcomes.
    Pliner EM; Campbell-Kyureghyan NH; Beschorner KE
    Ergonomics; 2014; 57(11):1739-49. PubMed ID: 25116116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical response to ladder slipping events: Effects of hand placement.
    Schnorenberg AJ; Campbell-Kyureghyan NH; Beschorner KE
    J Biomech; 2015 Nov; 48(14):3810-5. PubMed ID: 26431752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the shoe-rung friction requirements during ladder climbing.
    Martin ER; Pliner EM; Beschorner KE
    J Biomech; 2020 Jan; 99():109507. PubMed ID: 31780121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of aerial ladder rung spacing on firefighter climbing biomechanics.
    Simeonov P; Hsiao H; Armstrong T; Fu Q; Woolley C; Kau TY
    Appl Ergon; 2020 Jan; 82():102911. PubMed ID: 31422289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Gloves and Pulling Task on Achievable Downward Pull Forces on a Rung.
    Beschorner KE; Slota GP; Pliner EM; Spaho E; Seo NJ
    Hum Factors; 2018 Mar; 60(2):191-200. PubMed ID: 29161154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ladder parameters on asymmetric patterns of force exertion during below-knee amputees climbing ladders.
    Li W; Li S; Fu Y; Chen J
    Int J Occup Saf Ergon; 2017 Mar; 23(1):21-32. PubMed ID: 27231803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum hand-rung coupling forces in children: the effects of handhold diameter.
    Ehrlich PF; Young JG; Ulin S; Woolley C; Armstrong TJ; Galecki A; Chen S; Ashton-Miller JA
    Hum Factors; 2013 Jun; 55(3):545-56. PubMed ID: 23829029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors affecting fall severity from a ladder: Impact of climbing direction, gloves, gender and adaptation.
    Pliner EM; Seo NJ; Beschorner KE
    Appl Ergon; 2017 Apr; 60():163-170. PubMed ID: 28166875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical analysis in ladder climbing: the effect of slant angle and climbing speed.
    Lee YH; Cheng CK; Tsuang YH
    Proc Natl Sci Counc Repub China B; 1994 Oct; 18(4):170-8. PubMed ID: 7701016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of handhold orientation, size, and wearing gloves on hand-handhold breakaway strength.
    Young JG; Woolley CB; Ashton-Miller JA; Armstrong TJ
    Hum Factors; 2012 Jun; 54(3):316-33. PubMed ID: 22768636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climbing parrots achieve pitch stability using forces and free moments produced by axial-appendicular couples.
    Reader LL; Carrier DR; Goller F; Isaacs MR; Moore Crisp A; Barnes CJ; Lee DV
    J Exp Biol; 2022 Jan; 225(1):. PubMed ID: 34748013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rats anticipate damaged rungs on the elevated ladder: Applications for rodent models of Parkinson's disease.
    Lopatin D; Caputo N; Damphousse C; Pandey S; Cohen J
    J Integr Neurosci; 2015 Mar; 14(1):97-120. PubMed ID: 25747570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ladder Safety: A Taxonomy of Limb-Movement Patterns for Three Points of Control.
    Jensen RC; Holland CJ
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32331390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Danger at every rung: Epidemiology and outcomes of ICU-admitted ladder-related trauma.
    Ackland HM; Pilcher DV; Roodenburg OS; McLellan SA; Cameron PA; Cooper DJ
    Injury; 2016 May; 47(5):1109-17. PubMed ID: 26783012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Three-dimensional analysis of variations of the forces associated with the climbing task in adolescents].
    Testa M; Debû B
    Arch Physiol Biochem; 1997 Sep; 105(5):496-506. PubMed ID: 9471341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the demands of backward balance loss and fall recovery during stair descent to prevent injury.
    Gosine P; Komisar V; Novak AC
    Appl Ergon; 2019 Nov; 81():102900. PubMed ID: 31422249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extending the center of pressure to incorporate handhold forces: Derivation and sample application.
    Borrelli J; Komisar V; Novak AC; Maki BE; King EC
    J Biomech; 2020 May; 104():109727. PubMed ID: 32173031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.