These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 32518106)

  • 1. New perspective of fracture mechanics inspired by gap test with crack-parallel compression.
    Nguyen H; Pathirage M; Rezaei M; Issa M; Cusatis G; Bažant ZP
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14015-14020. PubMed ID: 32518106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sprain energy consequences for damage localization and fracture mechanics.
    Xu H; Nguyen AT; Bažant ZP
    Proc Natl Acad Sci U S A; 2024 Oct; 121(40):e2410668121. PubMed ID: 39325423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Particle-Based Cohesive Crack Model for Brittle Fracture Problems.
    Chen H; Zhang YX; Zhu L; Xiong F; Liu J; Gao W
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32823584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods.
    Biswakarma JJS; Cruz DA; Bain ED; Dennis JM; Andzelm JW; Lustig SR
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hybrid Finite Volume and Extended Finite Element Method for Hydraulic Fracturing with Cohesive Crack Propagation in Quasi-Brittle Materials.
    Liu C; Shen Z; Gan L; Jin T; Zhang H; Liu D
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical bone fracture analysis using XFEM - case study.
    Idkaidek A; Jasiuk I
    Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27287280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-evaluating the toughness of human cortical bone.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Bone; 2006 Jun; 38(6):878-87. PubMed ID: 16338188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete analytical solutions for double cantilever beam specimens with bi-linear quasi-brittle and brittle interfaces.
    Škec L; Alfano G; Jelenić G
    Int J Fract; 2019; 215(1):1-37. PubMed ID: 30872889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Assessment of the Influence of Tensile Softening of Concrete in Beams under Bending by Numerical Simulations with XFEM and Cohesive Cracks.
    Marzec I; Bobiński J
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative modelling of crack propagation in elastic-plastic materials using the meshfree local radial basis point interpolation method and eXtended finite-element method.
    Li Y; Xu N; Tu J; Mei G
    R Soc Open Sci; 2019 Nov; 6(11):190543. PubMed ID: 31827821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law.
    Alrayes O; Könke C; Ooi ET; Hamdia KM
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Biomaterials; 2006 Mar; 27(9):2095-113. PubMed ID: 16271757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Numerical Method for Applying Cohesive Stress on Fracture Process Zone in Concrete Using Nonlinear Spring Element.
    Li Z
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and Numerical Study of Concrete Fracture Behavior with Multiple Cracks Based on the Meso-Model.
    Wang Z; Zhang W; Huang Y
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear Elastic Fracture Mechanics Assessment of a Gas Turbine Vane.
    Orenes Moreno B; Bessone A; Solazzi S; Vanti F; Bagnera F; Riva A; Botto D
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Finite Element Modeling of Linear Elastic Fatigue Crack Growth.
    Alshoaibi AM; Bashiri AH
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the Cohesive Law in Mode I Loading of
    Majano-Majano A; Lara-Bocanegra AJ; Xavier J; Morais J
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30577617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscale Cohesive-Friction-Based Finite Element Model for the Crack Opening Mechanism of Hooked-End Steel Fiber-Reinforced Concrete.
    Abbas YM
    Materials (Basel); 2021 Feb; 14(3):. PubMed ID: 33535546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed Mode Crack Propagation in Polymers Using a Discrete Lattice Method.
    Braun M; Aranda-Ruiz J; Fernández-Sáez J
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33920989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
    Wang G; Zhang S; Bian C; Kong H
    J Mech Behav Biomed Mater; 2014 Nov; 39():119-28. PubMed ID: 25123435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.