These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 32518237)
21. Use of CRISPR/Cas9-Based Gene Editing to Simultaneously Mutate Multiple Homologous Genes Required for Pollen Development and Male Fertility in Maize. Liu X; Zhang S; Jiang Y; Yan T; Fang C; Hou Q; Wu S; Xie K; An X; Wan X Cells; 2022 Jan; 11(3):. PubMed ID: 35159251 [TBL] [Abstract][Full Text] [Related]
22. Cis-directed cleavage and nonstoichiometric abundances of 21-nucleotide reproductive phased small interfering RNAs in grasses. Tamim S; Cai Z; Mathioni SM; Zhai J; Teng C; Zhang Q; Meyers BC New Phytol; 2018 Nov; 220(3):865-877. PubMed ID: 29708601 [TBL] [Abstract][Full Text] [Related]
23. Spatiotemporal regulation and roles of reproductive phasiRNAs in plants. Komiya R Genes Genet Syst; 2022 Feb; 96(5):209-215. PubMed ID: 34759068 [TBL] [Abstract][Full Text] [Related]
24. mRNA cleavage by 21-nucleotide phasiRNAs determines temperature-sensitive male sterility in rice. Shi C; Zou W; Zhu Y; Zhang J; Teng C; Wei H; He H; He W; Liu X; Zhang B; Zhang H; Leng Y; Guo M; Wang X; Chen W; Zhang Z; Qian H; Cui Y; Jiang H; Chen Y; Fei Q; Meyers BC; Liang W; Qian Q; Shang L Plant Physiol; 2024 Mar; 194(4):2354-2371. PubMed ID: 38060676 [TBL] [Abstract][Full Text] [Related]
25. Conserved and non-conserved triggers of 24-nucleotide reproductive phasiRNAs in eudicots. Pokhrel S; Huang K; Meyers BC Plant J; 2021 Sep; 107(5):1332-1345. PubMed ID: 34160111 [TBL] [Abstract][Full Text] [Related]
26. Molecular regulation of An X; Ma B; Duan M; Dong Z; Liu R; Yuan D; Hou Q; Wu S; Zhang D; Liu D; Yu D; Zhang Y; Xie K; Zhu T; Li Z; Zhang S; Tian Y; Liu C; Li J; Yuan L; Wan X Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23499-23509. PubMed ID: 32907946 [TBL] [Abstract][Full Text] [Related]
27. Genome-wide identification of AGO18b-bound miRNAs and phasiRNAs in maize by cRIP-seq. Sun W; Chen D; Xue Y; Zhai L; Zhang D; Cao Z; Liu L; Cheng C; Zhang Y; Zhang Z BMC Genomics; 2019 Aug; 20(1):656. PubMed ID: 31419938 [TBL] [Abstract][Full Text] [Related]
28. Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Xie K; Wu S; Li Z; Zhou Y; Zhang D; Dong Z; An X; Zhu T; Zhang S; Liu S; Li J; Wan X Theor Appl Genet; 2018 Jun; 131(6):1363-1378. PubMed ID: 29546443 [TBL] [Abstract][Full Text] [Related]
29. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Liang Z; Zhang K; Chen K; Gao C J Genet Genomics; 2014 Feb; 41(2):63-8. PubMed ID: 24576457 [TBL] [Abstract][Full Text] [Related]
30. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Shi J; Gao H; Wang H; Lafitte HR; Archibald RL; Yang M; Hakimi SM; Mo H; Habben JE Plant Biotechnol J; 2017 Feb; 15(2):207-216. PubMed ID: 27442592 [TBL] [Abstract][Full Text] [Related]
31. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Jiang Y; An X; Li Z; Yan T; Zhu T; Xie K; Liu S; Hou Q; Zhao L; Wu S; Liu X; Zhang S; He W; Li F; Li J; Wan X Plant Biotechnol J; 2021 Sep; 19(9):1769-1784. PubMed ID: 33772993 [TBL] [Abstract][Full Text] [Related]
32. CRISPR/Cas9 Guided Mutagenesis of Usman B; Zhao N; Nawaz G; Qin B; Liu F; Liu Y; Li R Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810044 [TBL] [Abstract][Full Text] [Related]
33. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. Qi W; Zhu T; Tian Z; Li C; Zhang W; Song R BMC Biotechnol; 2016 Aug; 16(1):58. PubMed ID: 27515683 [TBL] [Abstract][Full Text] [Related]
34. Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system. Barman HN; Sheng Z; Fiaz S; Zhong M; Wu Y; Cai Y; Wang W; Jiao G; Tang S; Wei X; Hu P BMC Plant Biol; 2019 Mar; 19(1):109. PubMed ID: 30894127 [TBL] [Abstract][Full Text] [Related]
35. Fertility restoration of maize CMS-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. Jaqueth JS; Hou Z; Zheng P; Ren R; Nagel BA; Cutter G; Niu X; Vollbrecht E; Greene TW; Kumpatla SP Plant J; 2020 Jan; 101(1):101-111. PubMed ID: 31487408 [TBL] [Abstract][Full Text] [Related]
36. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Komiya R; Ohyanagi H; Niihama M; Watanabe T; Nakano M; Kurata N; Nonomura K Plant J; 2014 May; 78(3):385-97. PubMed ID: 24635777 [TBL] [Abstract][Full Text] [Related]
37. Base Editing: The Ever Expanding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Tool Kit for Precise Genome Editing in Plants. Monsur MB; Shao G; Lv Y; Ahmad S; Wei X; Hu P; Tang S Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32344599 [TBL] [Abstract][Full Text] [Related]
38. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System. Feng C; Yuan J; Wang R; Liu Y; Birchler JA; Han F J Genet Genomics; 2016 Jan; 43(1):37-43. PubMed ID: 26842992 [TBL] [Abstract][Full Text] [Related]
39. CRISPR/Cas9-Mediated Multiplex Genome Editing of the Sun Q; Lin L; Liu D; Wu D; Fang Y; Wu J; Wang Y Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30208656 [TBL] [Abstract][Full Text] [Related]
40. Genome-wide discovery and analysis of phased small interfering RNAs in Chinese sacred lotus. Zheng Y; Wang S; Sunkar R PLoS One; 2014; 9(12):e113790. PubMed ID: 25469507 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]