These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32518237)

  • 41. Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development.
    Dotto MC; Petsch KA; Aukerman MJ; Beatty M; Hammell M; Timmermans MC
    PLoS Genet; 2014 Dec; 10(12):e1004826. PubMed ID: 25503246
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNA-guided genome editing in plants using a CRISPR-Cas system.
    Xie K; Yang Y
    Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Premeiotic 24-nt phasiRNAs are present in the
    Zhan J; Bélanger S; Lewis S; Teng C; McGregor M; Beric A; Schon MA; Nodine MD; Meyers BC
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617318
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genome-Wide Characterization of Maize Small RNA Loci and Their Regulation in the required to maintain repression6-1 (rmr6-1) Mutant and Long-Term Abiotic Stresses.
    Lunardon A; Forestan C; Farinati S; Axtell MJ; Varotto S
    Plant Physiol; 2016 Mar; 170(3):1535-48. PubMed ID: 26747286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa).
    Li XJ; Zhang YF; Hou M; Sun F; Shen Y; Xiu ZH; Wang X; Chen ZL; Sun SS; Small I; Tan BC
    Plant J; 2014 Sep; 79(5):797-809. PubMed ID: 24923534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phased secondary small interfering RNAs in Panaxnotoginseng.
    Chen K; Liu L; Zhang X; Yuan Y; Ren S; Guo J; Wang Q; Liao P; Li S; Cui X; Li YF; Zheng Y
    BMC Genomics; 2018 Jan; 19(Suppl 1):41. PubMed ID: 29363419
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Small RNA profiling from meiotic and post-meiotic anthers reveals prospective miRNA-target modules for engineering male fertility in sorghum.
    Dhaka N; Sharma S; Vashisht I; Kandpal M; Sharma MK; Sharma R
    Genomics; 2020 Mar; 112(2):1598-1610. PubMed ID: 31521711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of a maize HD-ZIP IV transcription factor by a non-conventional RDR2-dependent small RNA.
    Klein-Cosson C; Chambrier P; Rogowsky PM; Vernoud V
    Plant J; 2015 Mar; 81(5):747-58. PubMed ID: 25619590
    [TBL] [Abstract][Full Text] [Related]  

  • 49.
    Sun L; Xiang X; Yang Z; Yu P; Wen X; Wang H; Abbas A; Muhammad Khan R; Zhang Y; Cheng S; Cao L
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30545137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize.
    Fox T; DeBruin J; Haug Collet K; Trimnell M; Clapp J; Leonard A; Li B; Scolaro E; Collinson S; Glassman K; Miller M; Schussler J; Dolan D; Liu L; Gho C; Albertsen M; Loussaert D; Shen B
    Plant Biotechnol J; 2017 Aug; 15(8):942-952. PubMed ID: 28055137
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.).
    Janga MR; Campbell LM; Rathore KS
    Plant Mol Biol; 2017 Jul; 94(4-5):349-360. PubMed ID: 28258551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize.
    Feng C; Su H; Bai H; Wang R; Liu Y; Guo X; Liu C; Zhang J; Yuan J; Birchler JA; Han F
    Plant Biotechnol J; 2018 Nov; 16(11):1848-1857. PubMed ID: 29569825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The best CRISPR/Cas9 versus RNA interference approaches for Arabinogalactan proteins' study.
    Moreira D; Pereira AM; Lopes AL; Coimbra S
    Mol Biol Rep; 2020 Mar; 47(3):2315-2325. PubMed ID: 31950325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants].
    Ma XL; Liu YG
    Yi Chuan; 2016 Feb; 38(2):118-25. PubMed ID: 26907775
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trans-Homolog Interactions Facilitating Paramutation in Maize.
    Giacopelli BJ; Hollick JB
    Plant Physiol; 2015 Aug; 168(4):1226-36. PubMed ID: 26149572
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Paramutation in maize: RNA mediated trans-generational gene silencing.
    Arteaga-Vazquez MA; Chandler VL
    Curr Opin Genet Dev; 2010 Apr; 20(2):156-63. PubMed ID: 20153628
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A cascade of bHLH-regulated pathways programs maize anther development.
    Nan GL; Teng C; Fernandes J; O'Connor L; Meyers BC; Walbot V
    Plant Cell; 2022 Mar; 34(4):1207-1225. PubMed ID: 35018475
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.