BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

623 related articles for article (PubMed ID: 32518349)

  • 1. Transplanting neural progenitor cells to restore connectivity after spinal cord injury.
    Fischer I; Dulin JN; Lane MA
    Nat Rev Neurosci; 2020 Jul; 21(7):366-383. PubMed ID: 32518349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of transplantation of neural stem/progenitor cells for spinal cord injury.
    Mothe AJ; Tator CH
    Int J Dev Neurosci; 2013 Nov; 31(7):701-13. PubMed ID: 23928260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells.
    Bonner JF; Steward O
    Brain Res; 2015 Sep; 1619():115-23. PubMed ID: 25591483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplantation of Neural Progenitors and V2a Interneurons after Spinal Cord Injury.
    Zholudeva LV; Iyer N; Qiang L; Spruance VM; Randelman ML; White NW; Bezdudnaya T; Fischer I; Sakiyama-Elbert SE; Lane MA
    J Neurotrauma; 2018 Dec; 35(24):2883-2903. PubMed ID: 29873284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural stem cell therapy aiming at better functional recovery after spinal cord injury.
    Zhu Y; Uezono N; Yasui T; Nakashima K
    Dev Dyn; 2018 Jan; 247(1):75-84. PubMed ID: 28766845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the therapeutic efficacy of neural progenitor cell transplantation following spinal cord injury.
    Lane MA; Lepore AC; Fischer I
    Expert Rev Neurother; 2017 May; 17(5):433-440. PubMed ID: 27927055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplanting neural progenitors into a complete transection model of spinal cord injury.
    Medalha CC; Jin Y; Yamagami T; Haas C; Fischer I
    J Neurosci Res; 2014 May; 92(5):607-18. PubMed ID: 24452691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafting Embryonic Raphe Neurons Reestablishes Serotonergic Regulation of Sympathetic Activity to Improve Cardiovascular Function after Spinal Cord Injury.
    Hou S; Saltos TM; Mironets E; Trueblood CT; Connors TM; Tom VJ
    J Neurosci; 2020 Feb; 40(6):1248-1264. PubMed ID: 31896670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Stem/Progenitor Cells of Human Olfactory Mucosa for the Treatment of Chronic Spinal Cord Injuries.
    Voronova AD; Stepanova OV; Valikhov MP; Chadin AV; Semkina AS; Chekhonin VP
    Bull Exp Biol Med; 2020 Feb; 168(4):538-541. PubMed ID: 32157509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cells: Preclinical Efficacy and Safety in Cervical Spinal Cord Injury.
    Manley NC; Priest CA; Denham J; Wirth ED; Lebkowski JS
    Stem Cells Transl Med; 2017 Oct; 6(10):1917-1929. PubMed ID: 28834391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stem cell transplantation for spinal cord injury repair.
    Lu P
    Prog Brain Res; 2017; 231():1-32. PubMed ID: 28554393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Transplanted Neural Precursors with the Injured Cervical Spinal Cord.
    Spruance VM; Zholudeva LV; Hormigo KM; Randelman ML; Bezdudnaya T; Marchenko V; Lane MA
    J Neurotrauma; 2018 Aug; 35(15):1781-1799. PubMed ID: 29295654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell transplantation therapy for spinal cord injury.
    Assinck P; Duncan GJ; Hilton BJ; Plemel JR; Tetzlaff W
    Nat Neurosci; 2017 Apr; 20(5):637-647. PubMed ID: 28440805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Spinal Oligodendrogenic Neural Progenitor Cells Promote Functional Recovery After Spinal Cord Injury by Axonal Remyelination and Tissue Sparing.
    Nagoshi N; Khazaei M; Ahlfors JE; Ahuja CS; Nori S; Wang J; Shibata S; Fehlings MG
    Stem Cells Transl Med; 2018 Nov; 7(11):806-818. PubMed ID: 30085415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional assessment of the acute local and distal transplantation of human neural stem cells after spinal cord injury.
    Cheng I; Mayle RE; Cox CA; Park DY; Smith RL; Corcoran-Schwartz I; Ponnusamy KE; Oshtory R; Smuck MW; Mitra R; Kharazi AI; Carragee EJ
    Spine J; 2012 Nov; 12(11):1040-4. PubMed ID: 23063425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.
    Emgård M; Piao J; Aineskog H; Liu J; Calzarossa C; Odeberg J; Holmberg L; Samuelsson EB; Bezubik B; Vincent PH; Falci SP; Seiger Å; Åkesson E; Sundström E
    Exp Neurol; 2014 Mar; 253():138-45. PubMed ID: 24412492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early graft of neural precursors in spinal cord compression reduces glial cyst and improves function.
    Boido M; Garbossa D; Vercelli A
    J Neurosurg Spine; 2011 Jul; 15(1):97-106. PubMed ID: 21456892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis.
    Yousefifard M; Rahimi-Movaghar V; Nasirinezhad F; Baikpour M; Safari S; Saadat S; Moghadas Jafari A; Asady H; Razavi Tousi SM; Hosseini M
    Neuroscience; 2016 May; 322():377-97. PubMed ID: 26917272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local versus distal transplantation of human neural stem cells following chronic spinal cord injury.
    Cheng I; Githens M; Smith RL; Johnston TR; Park DY; Stauff MP; Salari N; Tileston KR; Kharazi AI
    Spine J; 2016 Jun; 16(6):764-9. PubMed ID: 26698654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transsynaptic tracing and its emerging use to assess graft-reconstructed neural circuits.
    Adler AF; Björklund A; Parmar M
    Stem Cells; 2020 Jun; 38(6):716-726. PubMed ID: 32101353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.