These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 32518401)

  • 1. Massively parallel Cas13 screens reveal principles for guide RNA design.
    Wessels HH; Méndez-Mancilla A; Guo X; Legut M; Daniloski Z; Sanjana NE
    Nat Biotechnol; 2020 Jun; 38(6):722-727. PubMed ID: 32518401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CASowary: CRISPR-Cas13 guide RNA predictor for transcript depletion.
    Krohannon A; Srivastava M; Rauch S; Srivastava R; Dickinson BC; Janga SC
    BMC Genomics; 2022 Mar; 23(1):172. PubMed ID: 35236300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat.
    Cram D; Kulkarni M; Buchwaldt M; Rajagopalan N; Bhowmik P; Rozwadowski K; Parkin IAP; Sharpe AG; Kagale S
    BMC Plant Biol; 2019 Nov; 19(1):474. PubMed ID: 31694550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.
    Zhu LJ; Holmes BR; Aronin N; Brodsky MH
    PLoS One; 2014; 9(9):e108424. PubMed ID: 25247697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CSC software corrects off-target mediated gRNA depletion in CRISPR-Cas9 essentiality screens.
    Perez AR; Sala L; Perez RK; Vidigal JA
    Nat Commun; 2021 Nov; 12(1):6461. PubMed ID: 34753924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting off-targeting in guide-RNAs for CRISPR systems for simultaneous editing of multiple genes.
    Ferreira R; Gatto F; Nielsen J
    FEBS Lett; 2017 Oct; 591(20):3288-3295. PubMed ID: 28884816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design.
    Smith JD; Suresh S; Schlecht U; Wu M; Wagih O; Peltz G; Davis RW; Steinmetz LM; Parts L; St Onge RP
    Genome Biol; 2016 Mar; 17():45. PubMed ID: 26956608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity.
    Höijer I; Johansson J; Gudmundsson S; Chin CS; Bunikis I; Häggqvist S; Emmanouilidou A; Wilbe M; den Hoed M; Bondeson ML; Feuk L; Gyllensten U; Ameur A
    Genome Biol; 2020 Dec; 21(1):290. PubMed ID: 33261648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems.
    O'Connell MR
    J Mol Biol; 2019 Jan; 431(1):66-87. PubMed ID: 29940185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR guides induce gene silencing in plants in the absence of Cas.
    Sharma VK; Marla S; Zheng W; Mishra D; Huang J; Zhang W; Morris GP; Cook DE
    Genome Biol; 2022 Jan; 23(1):6. PubMed ID: 34980227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. multicrispr: gRNA design for prime editing and parallel targeting of thousands of targets.
    Bhagwat AM; Graumann J; Wiegandt R; Bentsen M; Welker J; Kuenne C; Preussner J; Braun T; Looso M
    Life Sci Alliance; 2020 Nov; 3(11):. PubMed ID: 32907859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells.
    Méndez-Mancilla A; Wessels HH; Legut M; Kadina A; Mabuchi M; Walker J; Robb GB; Holden K; Sanjana NE
    Cell Chem Biol; 2022 Feb; 29(2):321-327.e4. PubMed ID: 34343484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome dependent Cas9/gRNA search time underlies sequence dependent gRNA activity.
    Moreb EA; Lynch MD
    Nat Commun; 2021 Aug; 12(1):5034. PubMed ID: 34413309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative autoregulation mitigates collateral RNase activity of repeat-targeting CRISPR-Cas13d in mammalian cells.
    Kelley CP; Haerle MC; Wang ET
    Cell Rep; 2022 Aug; 40(7):111226. PubMed ID: 35977479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Engineered CRISPR-Cas-Mediated Systems for Site-Specific RNA Editing.
    Marina RJ; Brannan KW; Dong KD; Yee BA; Yeo GW
    Cell Rep; 2020 Nov; 33(5):108350. PubMed ID: 33147453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repurposing CRISPR-Cas13 systems for robust mRNA trans-splicing.
    Fiflis DN; Rey NA; Venugopal-Lavanya H; Sewell B; Mitchell-Dick A; Clements KN; Milo S; Benkert AR; Rosales A; Fergione S; Asokan A
    Nat Commun; 2024 Mar; 15(1):2325. PubMed ID: 38485709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Prediction of CRISPR/Cas9 Target Sites Reveals Potential Off-Target Risks in Human and Mouse.
    Wang Q; Ui-Tei K
    Methods Mol Biol; 2017; 1630():43-53. PubMed ID: 28643248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage.
    Riesenberg S; Helmbrecht N; Kanis P; Maricic T; Pääbo S
    Nat Commun; 2022 Jan; 13(1):489. PubMed ID: 35078986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of specific RNA knockdown in mammalian cells with CRISPR-Cas13.
    Burris BJD; Molina Vargas AM; Park BJ; O'Connell MR
    Methods; 2022 Oct; 206():58-68. PubMed ID: 35987443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens.
    Hart T; Tong AHY; Chan K; Van Leeuwen J; Seetharaman A; Aregger M; Chandrashekhar M; Hustedt N; Seth S; Noonan A; Habsid A; Sizova O; Nedyalkova L; Climie R; Tworzyanski L; Lawson K; Sartori MA; Alibeh S; Tieu D; Masud S; Mero P; Weiss A; Brown KR; Usaj M; Billmann M; Rahman M; Constanzo M; Myers CL; Andrews BJ; Boone C; Durocher D; Moffat J
    G3 (Bethesda); 2017 Aug; 7(8):2719-2727. PubMed ID: 28655737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.