These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Luo H; Zhu G; Eshelman MA; Fung TK; Lai Q; Wang F; Zeisig BB; Lesperance J; Ma X; Chen S; Cesari N; Cogle C; Chen B; Xu B; Yang FC; So CWE; Qiu Y; Xu M; Huang S Mol Cell; 2022 Feb; 82(4):833-851.e11. PubMed ID: 35180428 [TBL] [Abstract][Full Text] [Related]
3. Alteration of CTCF-associated chromatin neighborhood inhibits TAL1-driven oncogenic transcription program and leukemogenesis. Li Y; Liao Z; Luo H; Benyoucef A; Kang Y; Lai Q; Dovat S; Miller B; Chepelev I; Li Y; Zhao K; Brand M; Huang S Nucleic Acids Res; 2020 Apr; 48(6):3119-3133. PubMed ID: 32086528 [TBL] [Abstract][Full Text] [Related]
4. A tour of 3D genome with a focus on CTCF. Wang DC; Wang W; Zhang L; Wang X Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214 [TBL] [Abstract][Full Text] [Related]
5. Boundary Associated Long Noncoding RNA Mediates Long-Range Chromosomal Interactions. Nwigwe IJ; Kim YJ; Wacker DA; Kim TH PLoS One; 2015; 10(8):e0136104. PubMed ID: 26302455 [TBL] [Abstract][Full Text] [Related]
6. Pushing the TAD boundary: Decoding insulator codes of clustered CTCF sites in 3D genomes. Huang H; Wu Q Bioessays; 2024 Oct; 46(10):e2400121. PubMed ID: 39169755 [TBL] [Abstract][Full Text] [Related]
7. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. Wutz G; Várnai C; Nagasaka K; Cisneros DA; Stocsits RR; Tang W; Schoenfelder S; Jessberger G; Muhar M; Hossain MJ; Walther N; Koch B; Kueblbeck M; Ellenberg J; Zuber J; Fraser P; Peters JM EMBO J; 2017 Dec; 36(24):3573-3599. PubMed ID: 29217591 [TBL] [Abstract][Full Text] [Related]
8. Active enhancers strengthen insulation by RNA-mediated CTCF binding at chromatin domain boundaries. Islam Z; Saravanan B; Walavalkar K; Farooq U; Singh AK; Radhakrishnan S; Thakur J; Pandit A; Henikoff S; Notani D Genome Res; 2023 Jan; 33(1):1-17. PubMed ID: 36650052 [TBL] [Abstract][Full Text] [Related]
9. HOX Loci Focused CRISPR/sgRNA Library Screening Identifying Critical CTCF Boundaries. Luo H; Sobh A; Vulpe CD; Brewer E; Dovat S; Qiu Y; Huang S J Vis Exp; 2019 Mar; (145):. PubMed ID: 30985763 [TBL] [Abstract][Full Text] [Related]
10. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells. Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138 [TBL] [Abstract][Full Text] [Related]
11. CTCF: a Swiss-army knife for genome organization and transcription regulation. Braccioli L; de Wit E Essays Biochem; 2019 Apr; 63(1):157-165. PubMed ID: 30940740 [TBL] [Abstract][Full Text] [Related]
12. Chromatin Architecture in the Fly: Living without CTCF/Cohesin Loop Extrusion?: Alternating Chromatin States Provide a Basis for Domain Architecture in Drosophila. Matthews NE; White R Bioessays; 2019 Sep; 41(9):e1900048. PubMed ID: 31264253 [TBL] [Abstract][Full Text] [Related]
13. CTCF is dispensable for immune cell transdifferentiation but facilitates an acute inflammatory response. Stik G; Vidal E; Barrero M; Cuartero S; Vila-Casadesús M; Mendieta-Esteban J; Tian TV; Choi J; Berenguer C; Abad A; Borsari B; le Dily F; Cramer P; Marti-Renom MA; Stadhouders R; Graf T Nat Genet; 2020 Jul; 52(7):655-661. PubMed ID: 32514124 [TBL] [Abstract][Full Text] [Related]
14. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Barutcu AR; Maass PG; Lewandowski JP; Weiner CL; Rinn JL Nat Commun; 2018 Apr; 9(1):1444. PubMed ID: 29654311 [TBL] [Abstract][Full Text] [Related]
15. An alternative CTCF isoform antagonizes canonical CTCF occupancy and changes chromatin architecture to promote apoptosis. Li J; Huang K; Hu G; Babarinde IA; Li Y; Dong X; Chen YS; Shang L; Guo W; Wang J; Chen Z; Hutchins AP; Yang YG; Yao H Nat Commun; 2019 Apr; 10(1):1535. PubMed ID: 30948729 [TBL] [Abstract][Full Text] [Related]
16. CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism. Hansen AS Nucleus; 2020 Dec; 11(1):132-148. PubMed ID: 32631111 [TBL] [Abstract][Full Text] [Related]
17. Differential 3D chromatin organization and gene activity in genomic imprinting. Noordermeer D; Feil R Curr Opin Genet Dev; 2020 Apr; 61():17-24. PubMed ID: 32299027 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional genome organization in normal and malignant haematopoiesis. Cuartero S; Merkenschlager M Curr Opin Hematol; 2018 Jul; 25(4):323-328. PubMed ID: 29702522 [TBL] [Abstract][Full Text] [Related]
19. Absolute quantification of cohesin, CTCF and their regulators in human cells. Holzmann J; Politi AZ; Nagasaka K; Hantsche-Grininger M; Walther N; Koch B; Fuchs J; Dürnberger G; Tang W; Ladurner R; Stocsits RR; Busslinger GA; Novák B; Mechtler K; Davidson IF; Ellenberg J; Peters JM Elife; 2019 Jun; 8():. PubMed ID: 31204999 [TBL] [Abstract][Full Text] [Related]
20. Acute depletion of CTCF directly affects MYC regulation through loss of enhancer-promoter looping. Hyle J; Zhang Y; Wright S; Xu B; Shao Y; Easton J; Tian L; Feng R; Xu P; Li C Nucleic Acids Res; 2019 Jul; 47(13):6699-6713. PubMed ID: 31127282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]