These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32518504)

  • 1. Stochastic modelling in fluid dynamics: Itô versus Stratonovich.
    Holm DD
    Proc Math Phys Eng Sci; 2020 May; 476(2237):20190812. PubMed ID: 32518504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational principles for stochastic fluid dynamics.
    Holm DD
    Proc Math Phys Eng Sci; 2015 Apr; 471(2176):20140963. PubMed ID: 27547083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic Variational Formulations of Fluid Wave-Current Interaction.
    Holm DD
    J Nonlinear Sci; 2021; 31(1):4. PubMed ID: 33364683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stratonovich-to-Itô transition in noisy systems with multiplicative feedback.
    Pesce G; McDaniel A; Hottovy S; Wehr J; Volpe G
    Nat Commun; 2013; 4():2733. PubMed ID: 24217466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.
    Cotter CJ; Gottwald GA; Holm DD
    Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170388. PubMed ID: 28989316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise.
    Kupferman R; Pavliotis GA; Stuart AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036120. PubMed ID: 15524600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Itô versus Stratonovich calculus in random population growth.
    Braumann CA
    Math Biosci; 2007 Mar; 206(1):81-107. PubMed ID: 16214183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Langevin dynamics in inhomogeneous media: re-examining the Itô-Stratonovich dilemma.
    Farago O; Grønbech-Jensen N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013301. PubMed ID: 24580354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prescription-induced jump distributions in multiplicative Poisson processes.
    Suweis S; Porporato A; Rinaldo A; Maritan A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061119. PubMed ID: 21797314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplicative Lévy processes: Itô versus Stratonovich interpretation.
    Srokowski T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051113. PubMed ID: 20364953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hamiltonian Computational Chemistry: Geometrical Structures in Chemical Dynamics and Kinetics.
    Farantos SC
    Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic calculus for uncoupled continuous-time random walks.
    Germano G; Politi M; Scalas E; Schilling RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066102. PubMed ID: 19658559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brownian colloidal particles: Ito, Stratonovich, or a different stochastic interpretation.
    Sancho JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):062102. PubMed ID: 22304133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adiabatic elimination for systems with inertia driven by compound Poisson colored noise.
    Li T; Min B; Wang Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022144. PubMed ID: 25353459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid colored noise process with space-dependent switching rates.
    Bressloff PC; Lawley SD
    Phys Rev E; 2017 Jul; 96(1-1):012129. PubMed ID: 29347173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electromechanical model of neuronal dynamics using Hamilton's principle.
    Drapaca CS
    Front Cell Neurosci; 2015; 9():271. PubMed ID: 26236195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows.
    Gay-Balmaz F; Holm DD
    J Nonlinear Sci; 2018; 28(3):873-904. PubMed ID: 29769757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.
    Holm DD
    Chaos; 2002 Jun; 12(2):518-530. PubMed ID: 12779582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harvesting in a random environment: Itô or Stratonovich calculus?
    Braumann CA
    J Theor Biol; 2007 Feb; 244(3):424-32. PubMed ID: 17070851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time evolution towards q-Gaussian stationary states through unified Itô-Stratonovich stochastic equation.
    dos Santos BC; Tsallis C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061119. PubMed ID: 21230656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.