These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Stratonovich-to-Itô transition in noisy systems with multiplicative feedback. Pesce G; McDaniel A; Hottovy S; Wehr J; Volpe G Nat Commun; 2013; 4():2733. PubMed ID: 24217466 [TBL] [Abstract][Full Text] [Related]
5. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics. Cotter CJ; Gottwald GA; Holm DD Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170388. PubMed ID: 28989316 [TBL] [Abstract][Full Text] [Related]
6. Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. Kupferman R; Pavliotis GA; Stuart AM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036120. PubMed ID: 15524600 [TBL] [Abstract][Full Text] [Related]
7. Itô versus Stratonovich calculus in random population growth. Braumann CA Math Biosci; 2007 Mar; 206(1):81-107. PubMed ID: 16214183 [TBL] [Abstract][Full Text] [Related]
8. Langevin dynamics in inhomogeneous media: re-examining the Itô-Stratonovich dilemma. Farago O; Grønbech-Jensen N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013301. PubMed ID: 24580354 [TBL] [Abstract][Full Text] [Related]
9. Prescription-induced jump distributions in multiplicative Poisson processes. Suweis S; Porporato A; Rinaldo A; Maritan A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061119. PubMed ID: 21797314 [TBL] [Abstract][Full Text] [Related]
10. Multiplicative Lévy processes: Itô versus Stratonovich interpretation. Srokowski T Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051113. PubMed ID: 20364953 [TBL] [Abstract][Full Text] [Related]
11. Hamiltonian Computational Chemistry: Geometrical Structures in Chemical Dynamics and Kinetics. Farantos SC Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785648 [TBL] [Abstract][Full Text] [Related]
12. Stochastic calculus for uncoupled continuous-time random walks. Germano G; Politi M; Scalas E; Schilling RL Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066102. PubMed ID: 19658559 [TBL] [Abstract][Full Text] [Related]
13. Brownian colloidal particles: Ito, Stratonovich, or a different stochastic interpretation. Sancho JM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):062102. PubMed ID: 22304133 [TBL] [Abstract][Full Text] [Related]
14. Adiabatic elimination for systems with inertia driven by compound Poisson colored noise. Li T; Min B; Wang Z Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022144. PubMed ID: 25353459 [TBL] [Abstract][Full Text] [Related]
16. An electromechanical model of neuronal dynamics using Hamilton's principle. Drapaca CS Front Cell Neurosci; 2015; 9():271. PubMed ID: 26236195 [TBL] [Abstract][Full Text] [Related]
18. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics. Holm DD Chaos; 2002 Jun; 12(2):518-530. PubMed ID: 12779582 [TBL] [Abstract][Full Text] [Related]
19. Harvesting in a random environment: Itô or Stratonovich calculus? Braumann CA J Theor Biol; 2007 Feb; 244(3):424-32. PubMed ID: 17070851 [TBL] [Abstract][Full Text] [Related]
20. Time evolution towards q-Gaussian stationary states through unified Itô-Stratonovich stochastic equation. dos Santos BC; Tsallis C Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061119. PubMed ID: 21230656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]