These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32518687)

  • 21. Systematic identification and classification of three-dimensional activity cliffs.
    Hu Y; Furtmann N; Gütschow M; Bajorath J
    J Chem Inf Model; 2012 Jun; 52(6):1490-8. PubMed ID: 22612566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity cliff clusters as a source of structure-activity relationship information.
    Dimova D; Stumpfe D; Hu Y; Bajorath J
    Expert Opin Drug Discov; 2015 May; 10(5):441-7. PubMed ID: 25715967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity cliff networks for medicinal chemistry.
    Stumpfe D; Bajorath J
    Drug Dev Res; 2014 Aug; 75(5):291-8. PubMed ID: 25160069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular scaffolds with high propensity to form multi-target activity cliffs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2010 Apr; 50(4):500-10. PubMed ID: 20361784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Data structures for compound promiscuity analysis: promiscuity cliffs, pathways and promiscuity hubs formed by inhibitors of the human kinome.
    Miljković F; Bajorath J
    Future Sci OA; 2019 Jul; 5(7):FSO404. PubMed ID: 31428450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Do medicinal chemists learn from activity cliffs? A systematic evaluation of cliff progression in evolving compound data sets.
    Dimova D; Heikamp K; Stumpfe D; Bajorath J
    J Med Chem; 2013 Apr; 56(8):3339-45. PubMed ID: 23527828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Interaction Hot Spots in Structures of Drug Targets on the Basis of Three-Dimensional Activity Cliff Information.
    Furtmann N; Hu Y; Gütschow M; Bajorath J
    Chem Biol Drug Des; 2015 Dec; 86(6):1458-65. PubMed ID: 26094578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advancing the activity cliff concept.
    Hu Y; Stumpfe D; Bajorath J
    F1000Res; 2013; 2():199. PubMed ID: 24555097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of activity cliffs on the basis of images using convolutional neural networks.
    Iqbal J; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2021 Dec; 35(12):1157-1164. PubMed ID: 33740200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum Mechanical Investigation of Three-Dimensional Activity Cliffs Using the Molecules-in-Molecules Fragmentation-Based Method.
    Thapa B; Erickson J; Raghavachari K
    J Chem Inf Model; 2020 Jun; 60(6):2924-2938. PubMed ID: 32407081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic assessment of coordinated activity cliffs formed by kinase inhibitors and detailed characterization of activity cliff clusters and associated SAR information.
    Dimova D; Stumpfe D; Bajorath J
    Eur J Med Chem; 2015 Jan; 90():414-27. PubMed ID: 25461890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of activity cliffs is accompanied by systematic increases in ligand efficiency from lowly to highly potent compounds.
    de la Vega de León A; Bajorath J
    AAPS J; 2014 Mar; 16(2):335-41. PubMed ID: 24477941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring structure-promiscuity relationships using dual-site promiscuity cliffs and corresponding single-site analogs.
    Hu H; Bajorath J
    Bioorg Med Chem; 2020 Jan; 28(1):115238. PubMed ID: 31818631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity.
    Tamura S; Miyao T; Bajorath J
    J Cheminform; 2023 Jan; 15(1):4. PubMed ID: 36611204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive analysis of three-dimensional activity cliffs formed by kinase inhibitors with different binding modes and cliff mapping of structural analogues.
    Furtmann N; Hu Y; Bajorath J
    J Med Chem; 2015 Jan; 58(1):252-64. PubMed ID: 25054653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rationalizing the Formation of Activity Cliffs in Different Compound Data Sets.
    Hu H; Stumpfe D; Bajorath J
    ACS Omega; 2018 Jul; 3(7):7736-7744. PubMed ID: 31458921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rationalizing Promiscuity Cliffs.
    Dimova D; Bajorath J
    ChemMedChem; 2018 Mar; 13(6):490-494. PubMed ID: 29024534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring QSAR models for activity-cliff prediction.
    Dablander M; Hanser T; Lambiotte R; Morris GM
    J Cheminform; 2023 Apr; 15(1):47. PubMed ID: 37069675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of Activity Cliffs Using Condensed Graphs of Reaction Representations, Descriptor Recombination, Support Vector Machine Classification, and Support Vector Regression.
    Horvath D; Marcou G; Varnek A; Kayastha S; de la Vega de León A; Bajorath J
    J Chem Inf Model; 2016 Sep; 56(9):1631-40. PubMed ID: 27564682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exposing the Limitations of Molecular Machine Learning with Activity Cliffs.
    van Tilborg D; Alenicheva A; Grisoni F
    J Chem Inf Model; 2022 Dec; 62(23):5938-5951. PubMed ID: 36456532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.