These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32518708)

  • 41. How to Extract More Information With Less Burden: Fundus Image Classification and Retinal Disease Localization With Ophthalmologist Intervention.
    Meng Q; Hashimoto Y; Satoh S
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3351-3361. PubMed ID: 32750970
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automatic Detection of Peripheral Retinal Lesions From Ultrawide-Field Fundus Images Using Deep Learning.
    Tang YW; Ji J; Lin JW; Wang J; Wang Y; Liu Z; Hu Z; Yang JF; Ng TK; Zhang M; Pang CP; Cen LP
    Asia Pac J Ophthalmol (Phila); 2023 May-Jun 01; 12(3):284-292. PubMed ID: 36912572
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of refractive power on quantification using ultra-widefield retinal imaging.
    Lim SH; Jeong S; Ahn JH; van Hemert J; Sagong M
    BMC Ophthalmol; 2021 Mar; 21(1):141. PubMed ID: 33743646
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.
    Keel S; Li Z; Scheetz J; Robman L; Phung J; Makeyeva G; Aung K; Liu C; Yan X; Meng W; Guymer R; Chang R; He M
    Clin Exp Ophthalmol; 2019 Nov; 47(8):1009-1018. PubMed ID: 31215760
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis.
    Islam MM; Yang HC; Poly TN; Jian WS; Jack Li YC
    Comput Methods Programs Biomed; 2020 Jul; 191():105320. PubMed ID: 32088490
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Feasibility of Using Ultra-Widefield Retinal Imaging to Identify Ocular Pathologies amongst Those with Systemic Medical Disease Attending a Tertiary Healthcare Facility at a University Hospital.
    Uhrmann MF; Peto T; Bullmann T; Andrassi-Darida M; Schumann M; Schmitz-Valckenberg S; Holz FG; Lorenz B
    Ophthalmologica; 2022; 245(5):455-463. PubMed ID: 35977524
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development and validation of a deep learning system to screen vision-threatening conditions in high myopia using optical coherence tomography images.
    Li Y; Feng W; Zhao X; Liu B; Zhang Y; Chi W; Lu M; Lin J; Wei Y; Li J; Zhang Q; Zhu Y; Chen C; Lu L; Zhao L; Lin H
    Br J Ophthalmol; 2022 May; 106(5):633-639. PubMed ID: 33355150
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Utility of Ultra-Widefield Retinal Imaging in the Follow-up and Management of Patients with Cytomegalovirus Retinitis.
    Liscombe-Sepúlveda JP; Alba-Linero C; Llorenç-Belles V; Adán-Civera A
    Ocul Immunol Inflamm; 2020 May; 28(4):659-664. PubMed ID: 31268742
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultra-widefield retinal imaging for adjunctive resident training in retinal break detection.
    Lin IH; Chien CC; Chen YH; Pao SI; Chen JT; Chen CL
    PLoS One; 2021; 16(6):e0253227. PubMed ID: 34161357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison Between Ultra-Widefield Pseudocolor Imaging and Indirect Ophthalmoscopy in the Detection of Peripheral Retinal Lesions.
    Fogliato G; Borrelli E; Iuliano L; Ramoni A; Querques L; Rabiolo A; Bandello F; Querques G
    Ophthalmic Surg Lasers Imaging Retina; 2019 Sep; 50(9):544-549. PubMed ID: 31589751
    [TBL] [Abstract][Full Text] [Related]  

  • 53. FQ-UWF: Unpaired Generative Image Enhancement for Fundus Quality Ultra-Widefield Retinal Images.
    Lee KG; Song SJ; Lee S; Kim BH; Kong M; Lee KM
    Bioengineering (Basel); 2024 Jun; 11(6):. PubMed ID: 38927804
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of Widefield Imaging Between Confocal Laser Scanning Ophthalmoscopy and Broad Line Fundus Imaging in Routine Clinical Practice.
    Conti TF; Ohlhausen M; Hom GL; Talcott KE; Golshani C; Choudhry N; Singh RP
    Ophthalmic Surg Lasers Imaging Retina; 2020 Feb; 51(2):89-94. PubMed ID: 32084281
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-contact ultra-widefield retinal imaging of infants with suspected abusive head trauma.
    Yusuf IH; Barnes JK; Fung TH; Elston JS; Patel CK;
    Eye (Lond); 2017 Mar; 31(3):353-363. PubMed ID: 28234351
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of anaemia from retinal fundus images via deep learning.
    Mitani A; Huang A; Venugopalan S; Corrado GS; Peng L; Webster DR; Hammel N; Liu Y; Varadarajan AV
    Nat Biomed Eng; 2020 Jan; 4(1):18-27. PubMed ID: 31873211
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automated Quality Assessment and Image Selection of Ultra-Widefield Fluorescein Angiography Images through Deep Learning.
    Li HH; Abraham JR; Sevgi DD; Srivastava SK; Hach JM; Whitney J; Vasanji A; Reese JL; Ehlers JP
    Transl Vis Sci Technol; 2020 Sep; 9(2):52. PubMed ID: 32995069
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting High Coronary Artery Calcium Score From Retinal Fundus Images With Deep Learning Algorithms.
    Son J; Shin JY; Chun EJ; Jung KH; Park KH; Park SJ
    Transl Vis Sci Technol; 2020 Nov; 9(6):28. PubMed ID: 33184590
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The retinal disease screening study: retrospective comparison of nonmydriatic fundus photography and three-dimensional optical coherence tomography for detection of retinal irregularities.
    Ouyang Y; Heussen FM; Keane PA; Sadda SR; Walsh AC
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5694-700. PubMed ID: 23847317
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment.
    Ohsugi H; Tabuchi H; Enno H; Ishitobi N
    Sci Rep; 2017 Aug; 7(1):9425. PubMed ID: 28842613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.