These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 32518963)

  • 1. Elbow angle generation during activities of daily living using a submovement prediction model.
    Naghibi SS; Fallah A; Maleki A; Ghassemi F
    Biol Cybern; 2020 Jun; 114(3):389-402. PubMed ID: 32518963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted ADL tasks.
    Wisneski KJ; Johnson MJ
    J Neuroeng Rehabil; 2007 Mar; 4():7. PubMed ID: 17381842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Range of motion of shoulder and elbow in activities of daily life in 3D motion analysis].
    Raiss P; Rettig O; Wolf S; Loew M; Kasten P
    Z Orthop Unfall; 2007; 145(4):493-8. PubMed ID: 17912671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic analysis of upper extremity movement during drinking in hemiplegic subjects.
    Kim K; Song WK; Lee J; Lee HY; Park DS; Ko BW; Kim J
    Clin Biomech (Bristol, Avon); 2014 Mar; 29(3):248-56. PubMed ID: 24451064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shoulder and elbow range of motion for the performance of activities of daily living: A systematic review.
    Oosterwijk AM; Nieuwenhuis MK; van der Schans CP; Mouton LJ
    Physiother Theory Pract; 2018 Jul; 34(7):505-528. PubMed ID: 29377745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EMG-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals.
    Au AT; Kirsch RF
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):471-80. PubMed ID: 11204038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the initiation of minimum-jerk submovements in three-dimensional target-oriented human arm trajectories.
    Liao JY; Kirsch RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6797-800. PubMed ID: 23367490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing and predicting submovements during human three-dimensional arm reaches.
    Liao JY; Kirsch RF
    PLoS One; 2014; 9(7):e103387. PubMed ID: 25057968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online Estimation of Elbow Joint Angle Using Upper Arm Acceleration: A Movement Partitioning Approach.
    Farokhzadi M; Maleki A; Fallah A; Rashidi S
    J Biomed Phys Eng; 2017 Sep; 7(3):305-314. PubMed ID: 29082222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living.
    Nam HS; Lee WH; Seo HG; Kim YJ; Bang MS; Kim S
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional joint co-ordination strategies of the upper limb during functional activities.
    Barker TM; Nicol AC; Kelly IG; Paul JP
    Proc Inst Mech Eng H; 1996; 210(1):17-26. PubMed ID: 8663889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic synthesis of synergies for control of reaching--hierarchical clustering.
    Jovović M; Jonić S; Popović D
    Med Eng Phys; 1999 Jun; 21(5):329-41. PubMed ID: 10576423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of simulated elbow arthrodesis on the ability to perform activities of daily living.
    Tang C; Roidis N; Itamura J; Vaishnau S; Shean C; Stevanovic M
    J Hand Surg Am; 2001 Nov; 26(6):1146-50. PubMed ID: 11721267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of training set on prediction of elbow trajectory from shoulder trajectory during reaching to targets.
    Kaliki RR; Davoodi R; Loeb GE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5483-6. PubMed ID: 17946704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of normative angular joint kinematics during two functional upper limb tasks.
    Valevicius AM; Boser QA; Lavoie EB; Chapman CS; Pilarski PM; Hebert JS; Vette AH
    Gait Posture; 2019 Mar; 69():176-186. PubMed ID: 30769260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elbow movement estimation based on EMG with NARX Neural Networks.
    Suplino LO; de Melo GC; Umemura GS; Forner-Cordero A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3767-3770. PubMed ID: 33018821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional motion of the upper extremity joints during various activities of daily living.
    Aizawa J; Masuda T; Koyama T; Nakamaru K; Isozaki K; Okawa A; Morita S
    J Biomech; 2010 Nov; 43(15):2915-22. PubMed ID: 20727523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
    Osu R; Gomi H
    J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.