These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 32518966)
1. Uric acid electrochemical sensing in biofluids based on Ni/Zn hydroxide nanocatalyst. Azeredo NFB; Gonçalves JM; Rossini PO; Araki K; Wang J; Angnes L Mikrochim Acta; 2020 Jun; 187(7):379. PubMed ID: 32518966 [TBL] [Abstract][Full Text] [Related]
2. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes. Jeon WY; Choi YB; Kim HH Sensors (Basel); 2015 Dec; 15(12):31083-91. PubMed ID: 26690438 [TBL] [Abstract][Full Text] [Related]
3. Additively manufactured carbon/black-integrated polylactic acid 3Dprintedsensor for simultaneous quantification of uric acid and zinc in sweat. Ataide VN; Rocha DP; de Siervo A; Paixão TRLC; Muñoz RAA; Angnes L Mikrochim Acta; 2021 Oct; 188(11):388. PubMed ID: 34668076 [TBL] [Abstract][Full Text] [Related]
4. An electrochemical biosensor based on multi-wall carbon nanotube-modified screen-printed electrode immobilized by uricase for the detection of salivary uric acid. Shi W; Li J; Wu J; Wei Q; Chen C; Bao N; Yu C; Gu H Anal Bioanal Chem; 2020 Oct; 412(26):7275-7283. PubMed ID: 32794003 [TBL] [Abstract][Full Text] [Related]
5. Determination of salivary uric acid by using poly(3,4-ethylenedioxythipohene) and graphene oxide in a disposable paper-based analytical device. Huang X; Shi W; Li J; Bao N; Yu C; Gu H Anal Chim Acta; 2020 Mar; 1103():75-83. PubMed ID: 32081191 [TBL] [Abstract][Full Text] [Related]
6. Nature inspired poly (dopamine quinone -vanadyl) as new modifier for voltammetric determination of uric acid. Shahbakhsh M; Saravani H; Hashemzaei Z; Narouie S Mikrochim Acta; 2020 Jun; 187(7):411. PubMed ID: 32602064 [TBL] [Abstract][Full Text] [Related]
7. Construction of an ultra-sensitive electrochemical sensor based on polyoxometalates decorated with CNTs and AuCo nanoparticles for the voltammetric simultaneous determination of dopamine and uric acid. Bai Z; Gao N; Xu H; Wang X; Tan L; Pang H; Ma H Mikrochim Acta; 2020 Aug; 187(8):483. PubMed ID: 32749597 [TBL] [Abstract][Full Text] [Related]
8. Electrodeposited poly(3,4-ethylenedioxythiophene) doped with graphene oxide for the simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Li D; Liu M; Zhan Y; Su Q; Zhang Y; Zhang D Mikrochim Acta; 2020 Jan; 187(1):94. PubMed ID: 31902014 [TBL] [Abstract][Full Text] [Related]
9. Screen-printed disposable electrodes using graphite-polyurethane composites modified with magnetite and chitosan-coated magnetite nanoparticles for voltammetric epinephrine sensing: a comparative study. Mattioli IA; Cervini P; Cavalheiro ÉTG Mikrochim Acta; 2020 May; 187(6):318. PubMed ID: 32388628 [TBL] [Abstract][Full Text] [Related]
10. p-Aminophenol-multiwall carbon nanotubes-TiO2 electrode as a sensor for simultaneous determination of penicillamine and uric acid. Ensafi AA; Khoddami E; Rezaei B; Karimi-Maleh H Colloids Surf B Biointerfaces; 2010 Nov; 81(1):42-9. PubMed ID: 20655185 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical sensor for L-cysteine by using a cobalt(II)/aluminum(III) layered double hydroxide as a nanocatalyst. Heidari M; Ghaffarinejad A Mikrochim Acta; 2019 May; 186(6):365. PubMed ID: 31104104 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor. Atta NF; El-Kady MF; Galal A Anal Biochem; 2010 May; 400(1):78-88. PubMed ID: 20064483 [TBL] [Abstract][Full Text] [Related]
15. An enzyme-free Ti Gilnezhad J; Firoozbakhtian A; Hosseini M; Adel S; Xu G; Ganjali MR Anal Chim Acta; 2023 Apr; 1250():340981. PubMed ID: 36898808 [TBL] [Abstract][Full Text] [Related]
16. A Dual-Function Wearable Electrochemical Sensor for Uric Acid and Glucose Sensing in Sweat. Li Z; Wang Y; Fan Z; Sun Y; Sun Y; Yang Y; Zhang Y; Ma J; Wang Z; Zhu Z Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671938 [TBL] [Abstract][Full Text] [Related]
17. Disposable non-enzymatic electrochemical glucose sensors based on screen-printed graphite macroelectrodes modified via a facile methodology with Ni, Cu, and Ni/Cu hydroxides are shown to accurately determine glucose in real human serum blood samples. Chelaghmia ML; Fisli H; Nacef M; Brownson DAC; Affoune AM; Satha H; Banks CE Anal Methods; 2021 Jul; 13(25):2812-2822. PubMed ID: 34059854 [TBL] [Abstract][Full Text] [Related]
19. Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection. Ayranci R; Demirkan B; Sen B; Şavk A; Ak M; Şen F Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():951-956. PubMed ID: 30889769 [TBL] [Abstract][Full Text] [Related]
20. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode. Rafiee B; Fakhari AR Biosens Bioelectron; 2013 Aug; 46():130-5. PubMed ID: 23531859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]