BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32519453)

  • 1. Core-Shell-Satellite Nanomaces as Remotely Controlled Self-Fueling Fenton Reagents for Imaging-Guided Triple-Negative Breast Cancer-Specific Therapy.
    Du Y; Yang C; Li F; Liao H; Chen Z; Lin P; Wang N; Zhou Y; Lee JY; Ding Q; Ling D
    Small; 2020 Aug; 16(31):e2002537. PubMed ID: 32519453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Au-Fe
    Wei R; Fu G; Li Z; Liu Y; Qi L; Liu K; Zhao Z; Xue M
    J Colloid Interface Sci; 2024 Jun; 663():644-655. PubMed ID: 38430834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermal Ferrotherapy - Induced Immunogenic Cell Death via Iron-Based Ternary Chalcogenide Nanoparticles Against Triple-Negative Breast Cancer.
    Wu Q; Li Z; Zhou X; Wei Z; Ramadan S; Xu Y; Xu L; Li D
    Small; 2024 May; 20(20):e2306766. PubMed ID: 38095479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Infrared Phototheranostic Iron Pyrite Nanocrystals Simultaneously Induce Dual Cell Death Pathways via Enhanced Fenton Reactions in Triple-Negative Breast Cancer.
    Zhao C; Liu Z; Chang CC; Chen YC; Zhang Q; Zhang XD; Andreou C; Pang J; Liu ZX; Wang DY; Kircher MF; Yang J
    ACS Nano; 2023 Mar; 17(5):4261-4278. PubMed ID: 36706095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen.
    Nagaya T; Sato K; Harada T; Nakamura Y; Choyke PL; Kobayashi H
    PLoS One; 2015; 10(8):e0136829. PubMed ID: 26313651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer.
    Zhang M; Kim HS; Jin T; Moon WK
    J Photochem Photobiol B; 2017 May; 170():58-64. PubMed ID: 28390259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide.
    Knickle A; Fernando W; Greenshields AL; Rupasinghe HPV; Hoskin DW
    Food Chem Toxicol; 2018 Aug; 118():154-167. PubMed ID: 29742465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Double-punch" strategy against triple-negative breast cancer via a synergistic therapy of magneto-mechanical force enhancing NIR-II hypothermal ablation.
    Du H; Yang F; Yao C; Lv W; Peng H; Stanciu SG; Stenmark HA; Song YM; Jiang B; Wu A
    Biomaterials; 2022 Dec; 291():121868. PubMed ID: 36332286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZD2-Engineered Gold Nanostar@Metal-Organic Framework Nanoprobes for T
    Zhang L; Liu C; Gao Y; Li Z; Xing J; Ren W; Zhang L; Li A; Lu G; Wu A; Zeng L
    Adv Healthc Mater; 2018 Dec; 7(24):e1801144. PubMed ID: 30370656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplified Fenton-Based Oxidative Stress Utilizing Ultraviolet Upconversion Luminescence-Fueled Nanoreactors for Apoptosis-Strengthened Ferroptosis Anticancer Therapy.
    Nguyen NT; Kim J; Le XT; Lee WT; Lee ES; Oh KT; Choi HG; Youn YS
    ACS Nano; 2023 Jan; 17(1):382-401. PubMed ID: 36579941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells.
    Mansur AAP; Mansur HS; Leonel AG; Carvalho IC; Lage MCG; Carvalho SM; Krambrock K; Lobato ZIP
    J Mater Chem B; 2020 Aug; 8(32):7166-7188. PubMed ID: 32614035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IR820-loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer.
    Valcourt DM; Dang MN; Day ES
    J Biomed Mater Res A; 2019 Aug; 107(8):1702-1712. PubMed ID: 30920169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fenton-reaction-stimulative nanoparticles decorated with a reactive-oxygen-species (ROS)-responsive molecular switch for ROS amplification and triple negative breast cancer therapy.
    Zhang J; Zuo T; Liang X; Xu Y; Yang Y; Fang T; Li J; Chen D; Shen Q
    J Mater Chem B; 2019 Dec; 7(45):7141-7151. PubMed ID: 31663577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic Delivery of Tumor-Targeting siRNA Nanoparticles against an Oncogenic LncRNA Facilitates Effective Triple-Negative Breast Cancer Therapy.
    Vaidya AM; Sun Z; Ayat N; Schilb A; Liu X; Jiang H; Sun D; Scheidt J; Qian V; He S; Gilmore H; Schiemann WP; Lu ZR
    Bioconjug Chem; 2019 Mar; 30(3):907-919. PubMed ID: 30739442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe
    Wu H; Cheng K; He Y; Li Z; Su H; Zhang X; Sun Y; Shi W; Ge D
    ACS Biomater Sci Eng; 2019 Feb; 5(2):1045-1056. PubMed ID: 33405795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Distance of Rattle-Shaped IONP@Shell-in-Shell Nanoparticles for Magnetically-Targeted Photothermal Therapy in the Second Near-Infrared Window.
    Tsai MF; Hsu C; Yeh CS; Hsiao YJ; Su CH; Wang LF
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):1508-1519. PubMed ID: 29200260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibronectin-Targeting and Cathepsin B-Activatable Theranostic Nanoprobe for MR/Fluorescence Imaging and Enhanced Photodynamic Therapy for Triple Negative Breast Cancer.
    Wang Y; Jiang L; Zhang Y; Lu Y; Li J; Wang H; Yao D; Wang D
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33564-33574. PubMed ID: 32633941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model.
    Chiu HW; Yeh YL; Wang YC; Huang WJ; Ho SY; Lin P; Wang YJ
    Mol Cancer; 2016 Jun; 15(1):46. PubMed ID: 27286975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic investigation on bio-corona of Au, Ag and Fe nanoparticles for the discovery of triple negative breast cancer serum protein biomarkers.
    Del Pilar Chantada-Vázquez M; López AC; Vence MG; Vázquez-Estévez S; Acea-Nebril B; Calatayud DG; Jardiel T; Bravo SB; Núñez C
    J Proteomics; 2020 Feb; 212():103581. PubMed ID: 31731051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strictinin, a novel ROR1-inhibitor, represses triple negative breast cancer survival and migration via modulation of PI3K/AKT/GSK3ß activity.
    Fultang N; Illendula A; Chen B; Wu C; Jonnalagadda S; Baird N; Klase Z; Peethambaran B
    PLoS One; 2019; 14(5):e0217789. PubMed ID: 31150511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.