These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32519550)

  • 1. On the Nature of Charge-Injecting Contacts in Organic Field-Effect Transistors.
    Natali M; Prosa M; Longo A; Brucale M; Mercuri F; Buonomo M; Lago N; Benvenuti E; Prescimone F; Bettini C; Cester A; Melucci M; Muccini M; Toffanin S
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30616-30626. PubMed ID: 32519550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport.
    Di CA; Shen H; Zhang F; Zhu D
    Acc Chem Res; 2019 Apr; 52(4):1113-1124. PubMed ID: 30908012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface engineering: an effective approach toward high-performance organic field-effect transistors.
    Di CA; Liu Y; Yu G; Zhu D
    Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doping: A Key Enabler for Organic Transistors.
    Xu Y; Sun H; Liu A; Zhu HH; Li W; Lin YF; Noh YY
    Adv Mater; 2018 Nov; 30(46):e1801830. PubMed ID: 30101530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic field-effect transistors using single crystals.
    Hasegawa T; Takeya J
    Sci Technol Adv Mater; 2009 Apr; 10(2):024314. PubMed ID: 27877287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pursuing Polymer Dielectric Interfacial Effect in Organic Transistors for Photosensing Performance Optimization.
    Wu X; Chu Y; Liu R; Katz HE; Huang J
    Adv Sci (Weinh); 2017 Dec; 4(12):1700442. PubMed ID: 29270350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits.
    Baeg KJ; Kim J; Khim D; Caironi M; Kim DY; You IK; Quinn JR; Facchetti A; Noh YY
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3205-14. PubMed ID: 21805991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Through thick and thin: tuning the threshold voltage in organic field-effect transistors.
    Martínez Hardigree JF; Katz HE
    Acc Chem Res; 2014 Apr; 47(4):1369-77. PubMed ID: 24684566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene as an electrode for solution-processed electron-transporting organic transistors.
    Parui S; Ribeiro M; Atxabal A; Llopis R; Casanova F; Hueso LE
    Nanoscale; 2017 Jul; 9(29):10178-10185. PubMed ID: 28517016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing molecular-level models for organic field-effect transistors.
    Li H; Brédas JL
    Natl Sci Rev; 2021 Apr; 8(4):nwaa167. PubMed ID: 35371512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting the Interplay between Organic Charge-Modulated Field-Effect Transistors and Field-Effect Transistors through Interface Control Engineering.
    Hwang T; Park E; Seo J; Tsogbayar D; Ko E; Yang C; Ahn H; Lee DY; Lee HS
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53765-53775. PubMed ID: 37944051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile Solution-Processed Reductive Interface Layer for Contact Engineering of Staggered Organic Field-Effect Transistors.
    Kim DE; Park JW; Seo S; Baeg KJ
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13560-13571. PubMed ID: 35258275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics.
    Liu Y; Duzhko VV; Page ZA; Emrick T; Russell TP
    Acc Chem Res; 2016 Nov; 49(11):2478-2488. PubMed ID: 27783502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal electrode for ambipolar charge injection in organic electronic devices.
    Sarkar T; Stein E; Vinokur J; Frey GL
    Mater Horiz; 2022 Aug; 9(8):2138-2146. PubMed ID: 35621068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Planar and Vertical Organic Field-Effect Transistors on Flexible Electronics.
    Nawaz A; Merces L; Ferro LMM; Sonar P; Bufon CCB
    Adv Mater; 2023 Mar; 35(11):e2204804. PubMed ID: 36124375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Templating and charge injection from copper electrodes into solution-processed organic field-effect transistors.
    Kim CH; Hlaing H; Carta F; Bonnassieux Y; Horowitz G; Kymissis I
    ACS Appl Mater Interfaces; 2013 May; 5(9):3716-21. PubMed ID: 23611406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft-Etching Copper and Silver Electrodes for Significant Device Performance Improvement toward Facile, Cost-Effective, Bottom-Contacted, Organic Field-Effect Transistors.
    Wang Z; Dong H; Zou Y; Zhao Q; Tan J; Liu J; Lu X; Xiao J; Zhang Q; Hu W
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7919-27. PubMed ID: 26967358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceptor Percolation Determines How Electron-Accepting Additives Modify Transport of Ambipolar Polymer Organic Field-Effect Transistors.
    Ford MJ; Wang M; Bustillo KC; Yuan J; Nguyen TQ; Bazan GC
    ACS Nano; 2018 Jul; 12(7):7134-7140. PubMed ID: 29851458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of organic field effect transistor by directly grown poly(3 hexylthiophene) crystalline nanowires on carbon nanotube aligned array electrode.
    Sarker BK; Liu J; Zhai L; Khondaker SI
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1180-5. PubMed ID: 21405101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.