BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32519699)

  • 1. The engineering of decameric d-fructose-6-phosphate aldolase A by combinatorial modulation of inter- and intra-subunit interactions.
    Yang X; Wu L; Li A; Ye L; Zhou J; Yu H
    Chem Commun (Camb); 2020 Jul; 56(55):7561-7564. PubMed ID: 32519699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-guided redesign of D-fructose-6-phosphate aldolase from E. coli: remarkable activity and selectivity towards acceptor substrates by two-point mutation.
    Gutierrez M; Parella T; Joglar J; Bujons J; Clapés P
    Chem Commun (Camb); 2011 May; 47(20):5762-4. PubMed ID: 21499643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions.
    Szekrenyi A; Garrabou X; Parella T; Joglar J; Bujons J; Clapés P
    Nat Chem; 2015 Sep; 7(9):724-9. PubMed ID: 26291944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of decameric fructose-6-phosphate aldolase from Escherichia coli reveals inter-subunit helix swapping as a structural basis for assembly differences in the transaldolase family.
    Thorell S; Schürmann M; Sprenger GA; Schneider G
    J Mol Biol; 2002 May; 319(1):161-71. PubMed ID: 12051943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the donor selectivity of D-fructose-6-phosphate aldolase for biocatalytic asymmetric cross-aldol additions of glycolaldehyde.
    Szekrenyi A; Soler A; Garrabou X; Guérard-Hélaine C; Parella T; Joglar J; Lemaire M; Bujons J; Clapés P
    Chemistry; 2014 Sep; 20(39):12572-83. PubMed ID: 25146467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and catalytic mechanism of L-rhamnulose-1-phosphate aldolase.
    Kroemer M; Merkel I; Schulz GE
    Biochemistry; 2003 Sep; 42(36):10560-8. PubMed ID: 12962479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insight for substrate tolerance to 2-deoxyribose-5-phosphate aldolase from the pathogen Streptococcus suis.
    Cao TP; Kim JS; Woo MH; Choi JM; Jun Y; Lee KH; Lee SH
    J Microbiol; 2016 Apr; 54(4):311-21. PubMed ID: 27033207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-Deoxyribose-5-phosphate aldolase, a remarkably tolerant aldolase towards nucleophile substrates.
    Chambre D; Guérard-Hélaine C; Darii E; Mariage A; Petit JL; Salanoubat M; de Berardinis V; Lemaire M; Hélaine V
    Chem Commun (Camb); 2019 Jul; 55(52):7498-7501. PubMed ID: 31187106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opening a Novel Biosynthetic Pathway to Dihydroxyacetone and Glycerol in
    Guitart Font E; Sprenger GA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic action of fuculose 1-phosphate aldolase (class II) as derived from structure-directed mutagenesis.
    Joerger AC; Gosse C; Fessner WD; Schulz GE
    Biochemistry; 2000 May; 39(20):6033-41. PubMed ID: 10821675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase.
    Shi R; McDonald L; Cui Q; Matte A; Cygler M; Ekiel I
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1302-7. PubMed ID: 21209328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational engineering of 2-deoxyribose-5-phosphate aldolases for the biosynthesis of (
    Kim T; Stogios PJ; Khusnutdinova AN; Nemr K; Skarina T; Flick R; Joo JC; Mahadevan R; Savchenko A; Yakunin AF
    J Biol Chem; 2020 Jan; 295(2):597-609. PubMed ID: 31806708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase.
    DeSantis G; Liu J; Clark DP; Heine A; Wilson IA; Wong CH
    Bioorg Med Chem; 2003 Jan; 11(1):43-52. PubMed ID: 12467706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aldolases Utilize Different Oligomeric States To Preserve Their Functional Dynamics.
    Katebi AR; Jernigan RL
    Biochemistry; 2015 Jun; 54(22):3543-54. PubMed ID: 25982518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalysis and binding in L-ribulose-5-phosphate 4-epimerase: a comparison with L-fuculose-1-phosphate aldolase.
    Samuel J; Luo Y; Morgan PM; Strynadka NC; Tanner ME
    Biochemistry; 2001 Dec; 40(49):14772-80. PubMed ID: 11732896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanism of HpcH: a metal ion dependent class II aldolase from the homoprotocatechuate degradation pathway of Escherichia coli.
    Rea D; Fülöp V; Bugg TD; Roper DI
    J Mol Biol; 2007 Nov; 373(4):866-76. PubMed ID: 17881002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadening deoxysugar glycodiversity: natural and engineered transaldolases unlock a complementary substrate space.
    Rale M; Schneider S; Sprenger GA; Samland AK; Fessner WD
    Chemistry; 2011 Feb; 17(9):2623-32. PubMed ID: 21290439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breaking the Dogma of Aldolase Specificity: Simple Aliphatic Ketones and Aldehydes are Nucleophiles for Fructose-6-phosphate Aldolase.
    Roldán R; Sanchez-Moreno I; Scheidt T; Hélaine V; Lemaire M; Parella T; Clapés P; Fessner WD; Guérard-Hélaine C
    Chemistry; 2017 Apr; 23(21):5005-5009. PubMed ID: 28266745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis of the phosphate-binding pocket of KDPG aldolase enhances selectivity for hydrophobic substrates.
    Cheriyan M; Toone EJ; Fierke CA
    Protein Sci; 2007 Nov; 16(11):2368-77. PubMed ID: 17962400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.