BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32519777)

  • 1. Probing the Origin of Adaptive Aromaticity in 16-Valence-Electron Metallapentalenes.
    Chen D; Szczepanik DW; Zhu J; Solà M
    Chemistry; 2020 Oct; 26(57):12964-12971. PubMed ID: 32519777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive aromaticity in 16-valence-electron metallazapentalenes.
    Qiu R; Zhu J
    Dalton Trans; 2021 Nov; 50(45):16842-16848. PubMed ID: 34779463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Aromaticity in 18e Metallapentalenes.
    Ye Q; Fang Y; Zhu J
    Inorg Chem; 2023 Sep; 62(36):14764-14772. PubMed ID: 37647172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar inorganic five-membered heterocycles with σ + π dual aromaticity in both S
    Gu X; Yang L; Jin P
    Phys Chem Chem Phys; 2022 Sep; 24(36):22091-22101. PubMed ID: 36073192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are Hetero-metallapentalenes Aromatic or Not? A DFT Investigation.
    Zhu Q; Lin L; Qiu R; Zhu J
    Chemistry; 2020 Apr; 26(24):5381-5387. PubMed ID: 31975467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving Adaptive Aromaticity in Cyclo[10]carbon by Screening Cyclo[n]carbon (n=8-24).
    Dai C; Chen D; Zhu J
    Chem Asian J; 2020 Jul; 15(14):2187-2191. PubMed ID: 32468684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive σ-Aromaticity in an Unsaturated Three-Membered Ring.
    Huang Y; Dai C; Zhu J
    Chem Asian J; 2020 Nov; 15(21):3444-3450. PubMed ID: 32856746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unconventional Aromaticity in Organometallics: The Power of Transition Metals.
    Chen D; Xie Q; Zhu J
    Acc Chem Res; 2019 May; 52(5):1449-1460. PubMed ID: 31062968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aryl Nitrenium and Oxenium Ions with Unusual High-Spin π,π* Ground States: Exploiting (Anti)Aromaticity.
    Qiu Y; Fischer LJ; Dutton AS; Winter AH
    J Org Chem; 2017 Dec; 82(24):13550-13556. PubMed ID: 29087717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds.
    Feixas F; Vandenbussche J; Bultinck P; Matito E; Solà M
    Phys Chem Chem Phys; 2011 Dec; 13(46):20690-703. PubMed ID: 22051972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the aromaticity and stability of benzynes in the ground and lowest-lying triplet excited states.
    Báez-Grez R; Pino-Rios R
    J Comput Chem; 2024 Jan; 45(1):6-12. PubMed ID: 37671655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scope and limitations of Baird's theory on triplet state aromaticity: application to the tuning of singlet-triplet energy gaps in fulvenes.
    Ottosson H; Kilså K; Chajara K; Piqueras MC; Crespo R; Kato H; Muthas D
    Chemistry; 2007; 13(24):6998-7005. PubMed ID: 17562534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting the Aromatic Chameleon Character of Fulvenes for Computational Design of Baird-Aromatic Triplet Ground State Compounds.
    Yadav S; El Bakouri O; Jorner K; Tong H; Dahlstrand C; Solà M; Ottosson H
    Chem Asian J; 2019 May; 14(10):1870-1878. PubMed ID: 30659757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive σ aromaticity in the rhenacyclopropene rings.
    Deng Q; Zhu J
    J Comput Chem; 2023 Nov; 44(29):2294-2301. PubMed ID: 37466308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Origin of Adaptive Aromaticity in 16-Valence-Electron Metallapentalenes.
    Chen D; Szczepanik DW; Zhu J; Solà M
    Chemistry; 2020 Oct; 26(57):12902. PubMed ID: 32870531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Excited-State Aromaticity To Design Highly Stable Singlet Fission Materials.
    Fallon KJ; Budden P; Salvadori E; Ganose AM; Savory CN; Eyre L; Dowland S; Ai Q; Goodlett S; Risko C; Scanlon DO; Kay CWM; Rao A; Friend RH; Musser AJ; Bronstein H
    J Am Chem Soc; 2019 Sep; 141(35):13867-13876. PubMed ID: 31381323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure, stability, and aromaticity of M
    Đorđević S; Radenković S
    Phys Chem Chem Phys; 2022 Mar; 24(10):5833-5841. PubMed ID: 35225998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclopropyl Group: An Excited-State Aromaticity Indicator?
    Ayub R; Papadakis R; Jorner K; Zietz B; Ottosson H
    Chemistry; 2017 Oct; 23(55):13684-13695. PubMed ID: 28683165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revival of Hückel Aromatic (Poly)benzenoid Subunits in Triplet State Polycyclic Aromatic Hydrocarbons by Silicon Substitution.
    Baranac-Stojanović M; Stojanović M; Aleksić J
    Chem Asian J; 2022 Feb; 17(4):e202101261. PubMed ID: 34964285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aromaticity and Antiaromaticity in the Excited States of Porphyrin Nanorings.
    Peeks MD; Gong JQ; McLoughlin K; Kobatake T; Haver R; Herz LM; Anderson HL
    J Phys Chem Lett; 2019 Apr; 10(8):2017-2022. PubMed ID: 30951313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.