BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32519807)

  • 21. Feasibility of Dixon magnetic resonance imaging to quantify effects of physical training on muscle composition-A pilot study in young and healthy men.
    Grimm A; Nickel MD; Chaudry O; Uder M; Jakob F; Kemmler W; Quick HH; Engelke K
    Eur J Radiol; 2019 May; 114():160-166. PubMed ID: 31005168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linearity and bias of proton density fat fraction across the full dynamic range of 0-100%: a multiplatform, multivendor phantom study using 1.5T and 3T MRI at two sites.
    Hu HH; Chen HS; Hernando D
    MAGMA; 2024 Feb; ():. PubMed ID: 38349454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intra- and inter-examination repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for estimation of hepatic proton density fat fraction in overweight and obese children and adults.
    Tyagi A; Yeganeh O; Levin Y; Hooker JC; Hamilton GC; Wolfson T; Gamst A; Zand AK; Heba E; Loomba R; Schwimmer J; Middleton MS; Sirlin CB
    Abdom Imaging; 2015 Oct; 40(8):3070-7. PubMed ID: 26350282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Test-retest reliability of rapid whole body and compartmental fat volume quantification on a widebore 3T MR system in normal-weight, overweight, and obese subjects.
    Newman D; Kelly-Morland C; Leinhard OD; Kasmai B; Greenwood R; Malcolm PN; Romu T; Borga M; Toms AP
    J Magn Reson Imaging; 2016 Dec; 44(6):1464-1473. PubMed ID: 27249363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multicenter, multivendor phantom study to validate proton density fat fraction and T2* values calculated using vendor-provided 6-point DIXON methods.
    Hayashi T; Fukuzawa K; Yamazaki H; Konno T; Miyati T; Kotoku J; Oba H; Kondo H; Toyoda K; Saitoh S
    Clin Imaging; 2018; 51():38-42. PubMed ID: 29425901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inter- and intra-observer variability of an anatomical landmark-based, manual segmentation method by MRI for the assessment of skeletal muscle fat content and area in subjects from the general population.
    Kiefer LS; Fabian J; Lorbeer R; Machann J; Storz C; Kraus MS; Wintermeyer E; Schlett C; Roemer F; Nikolaou K; Peters A; Bamberg F
    Br J Radiol; 2018 Sep; 91(1089):20180019. PubMed ID: 29658780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI.
    Baum T; Yap SP; Dieckmeyer M; Ruschke S; Eggers H; Kooijman H; Rummeny EJ; Bauer JS; Karampinos DC
    J Magn Reson Imaging; 2015 Oct; 42(4):1018-23. PubMed ID: 25639780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interexamination repeatability and spatial heterogeneity of liver iron and fat quantification using MRI-based multistep adaptive fitting algorithm.
    Sofue K; Mileto A; Dale BM; Zhong X; Bashir MR
    J Magn Reson Imaging; 2015 Nov; 42(5):1281-90. PubMed ID: 25920074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of anterior thigh muscle size and fat infiltration using single-slice CT imaging versus automated MRI analysis in adults.
    Niklasson E; Borga M; Dahlqvist Leinhard O; Widholm P; Andersson DP; Wiik A; Holmberg M; Brismar TB; Gustafsson T; Lundberg TR
    Br J Radiol; 2022 May; 95(1133):20211094. PubMed ID: 35195445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Comparison between 6-point Dixon MRI and MR Spectroscopy to Quantify Muscle Fat in the Thigh of Subjects with Sarcopenia.
    Grimm A; Meyer H; Nickel MD; Nittka M; Raithel E; Chaudry O; Friedberger A; Uder M; Kemmler W; Engelke K; Quick HH
    J Frailty Aging; 2019; 8(1):21-26. PubMed ID: 30734827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation of fat distribution in whole body MRI with generally used anthropometric data.
    Ludescher B; Machann J; Eschweiler GW; Vanhöfen S; Maenz C; Thamer C; Claussen CD; Schick F
    Invest Radiol; 2009 Nov; 44(11):712-9. PubMed ID: 19809346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repeatability and reproducibility of multiparametric magnetic resonance imaging of the liver.
    Bachtiar V; Kelly MD; Wilman HR; Jacobs J; Newbould R; Kelly CJ; Gyngell ML; Groves KE; McKay A; Herlihy AH; Fernandes CC; Halberstadt M; Maguire M; Jayaratne N; Linden S; Neubauer S; Banerjee R
    PLoS One; 2019; 14(4):e0214921. PubMed ID: 30970039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect on precision and T1 bias comparing two flip angles when estimating muscle fat infiltration using fat-referenced chemical shift-encoded imaging.
    Karlsson A; Peolsson A; Romu T; Dahlqvist Leinhard O; Spetz Holm AC; Thorell S; West J; Borga M
    NMR Biomed; 2021 Nov; 34(11):e4581. PubMed ID: 34232549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reproducibility of Intra- and Inter-scanner Measurements of Liver Fat Using Complex Confounder-corrected Chemical Shift Encoded MRI at 3.0 Tesla.
    Wu B; Han W; Li Z; Zhao Y; Ge M; Guo X; Wu X
    Sci Rep; 2016 Jan; 6():19339. PubMed ID: 26763303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic muscle and fat segmentation in the thigh from T1-Weighted MRI.
    Orgiu S; Lafortuna CL; Rastelli F; Cadioli M; Falini A; Rizzo G
    J Magn Reson Imaging; 2016 Mar; 43(3):601-10. PubMed ID: 26268693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic segmentation of whole-body adipose tissue from magnetic resonance fat fraction images based on machine learning.
    Wang Z; Cheng C; Peng H; Qi Y; Wan Q; Zhou H; Qu S; Liang D; Liu X; Zheng H; Zou C
    MAGMA; 2022 Apr; 35(2):193-203. PubMed ID: 34524564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of a high-SNR chemical-shift-encoded MRI with complex reconstruction for proton density fat fraction (PDFF) estimation overall and in the low-fat range.
    Park CC; Hooker C; Hooker JC; Bass E; Haufe W; Schlein A; Covarrubias Y; Heba E; Bydder M; Wolfson T; Gamst A; Loomba R; Schwimmer J; Hernando D; Reeder SB; Middleton M; Sirlin CB; Hamilton G
    J Magn Reson Imaging; 2019 Jan; 49(1):229-238. PubMed ID: 29707848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of liver fat in the presence of iron overload.
    Horng DE; Hernando D; Reeder SB
    J Magn Reson Imaging; 2017 Feb; 45(2):428-439. PubMed ID: 27405703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlation between incidental fat deposition in the liver and pancreas in asymptomatic individuals.
    Aliyari Ghasabeh M; Shaghaghi M; Khoshpouri P; Pan L; Pandy A; Pandy P; Zhong X; Kannengiesser S; Kamel IR
    Abdom Radiol (NY); 2020 Jan; 45(1):203-210. PubMed ID: 31482380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fat quantification using three-point dixon technique: in vitro validation.
    Kovanlikaya A; Guclu C; Desai C; Becerra R; Gilsanz V
    Acad Radiol; 2005 May; 12(5):636-9. PubMed ID: 15866138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.