BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32519853)

  • 41. Allosteric Modulation of Human Hsp90α Conformational Dynamics.
    Penkler DL; Atilgan C; Tastan Bishop Ö
    J Chem Inf Model; 2018 Feb; 58(2):383-404. PubMed ID: 29378140
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of the interaction of Aha1 with components of the Hsp90 chaperone machine and client proteins.
    Sun L; Prince T; Manjarrez JR; Scroggins BT; Matts RL
    Biochim Biophys Acta; 2012 Jun; 1823(6):1092-101. PubMed ID: 22504172
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
    Meyer P; Prodromou C; Liao C; Hu B; Roe SM; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH
    EMBO J; 2004 Mar; 23(6):1402-10. PubMed ID: 15039704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways.
    Tse A; Verkhivker GM
    PLoS One; 2016; 11(11):e0166583. PubMed ID: 27861609
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural basis of the key residue W320 responsible for Hsp90 conformational change.
    Peng S; Matts RL; Deng J
    J Biomol Struct Dyn; 2023 Nov; 41(19):9745-9755. PubMed ID: 36373326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic nucleotide-dependent interactions of cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones Chp-1 and melusin with cochaperones PP5 and Sgt1.
    Hong TJ; Kim S; Wi AR; Lee P; Kang M; Jeong JH; Hahn JS
    J Biol Chem; 2013 Jan; 288(1):215-22. PubMed ID: 23184943
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen.
    O'Meara TR; O'Meara MJ; Polvi EJ; Pourhaghighi MR; Liston SD; Lin ZY; Veri AO; Emili A; Gingras AC; Cowen LE
    PLoS Biol; 2019 Jul; 17(7):e3000358. PubMed ID: 31283755
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design.
    Ferraro M; D'Annessa I; Moroni E; Morra G; Paladino A; Rinaldi S; Compostella F; Colombo G
    J Med Chem; 2019 Jan; 62(1):60-87. PubMed ID: 30048133
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The therapeutic target Hsp90 and cancer hallmarks.
    Miyata Y; Nakamoto H; Neckers L
    Curr Pharm Des; 2013; 19(3):347-65. PubMed ID: 22920906
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural and computational biology of the molecular chaperone Hsp90: from understanding molecular mechanisms to computer-based inhibitor design.
    Verkhivker GM; Dixit A; Morra G; Colombo G
    Curr Top Med Chem; 2009; 9(15):1369-85. PubMed ID: 19860735
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolution and function of diverse Hsp90 homologs and cochaperone proteins.
    Johnson JL
    Biochim Biophys Acta; 2012 Mar; 1823(3):607-13. PubMed ID: 22008467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Asymmetric activation of the hsp90 dimer by its cochaperone aha1.
    Retzlaff M; Hagn F; Mitschke L; Hessling M; Gugel F; Kessler H; Richter K; Buchner J
    Mol Cell; 2010 Feb; 37(3):344-54. PubMed ID: 20159554
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stimulation of the weak ATPase activity of human hsp90 by a client protein.
    McLaughlin SH; Smith HW; Jackson SE
    J Mol Biol; 2002 Jan; 315(4):787-98. PubMed ID: 11812147
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90.
    Vollmar L; Schimpf J; Hermann B; Hugel T
    Nat Commun; 2024 Jan; 15(1):569. PubMed ID: 38233436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional specificity of co-chaperone interactions with Hsp90 client proteins.
    Riggs DL; Cox MB; Cheung-Flynn J; Prapapanich V; Carrigan PE; Smith DF
    Crit Rev Biochem Mol Biol; 2004; 39(5-6):279-95. PubMed ID: 15763706
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins.
    McLaughlin SH; Sobott F; Yao ZP; Zhang W; Nielsen PR; Grossmann JG; Laue ED; Robinson CV; Jackson SE
    J Mol Biol; 2006 Feb; 356(3):746-58. PubMed ID: 16403413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A methylated lysine is a switch point for conformational communication in the chaperone Hsp90.
    Rehn A; Lawatscheck J; Jokisch ML; Mader SL; Luo Q; Tippel F; Blank B; Richter K; Lang K; Kaila VRI; Buchner J
    Nat Commun; 2020 Mar; 11(1):1219. PubMed ID: 32139682
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probing conformational landscapes and mechanisms of allosteric communication in the functional states of the ABL kinase domain using multiscale simulations and network-based mutational profiling of allosteric residue potentials.
    Krishnan K; Tian H; Tao P; Verkhivker GM
    J Chem Phys; 2022 Dec; 157(24):245101. PubMed ID: 36586979
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery.
    Pratt WB; Toft DO
    Exp Biol Med (Maywood); 2003 Feb; 228(2):111-33. PubMed ID: 12563018
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure, Function, and Regulation of the Hsp90 Machinery.
    Biebl MM; Buchner J
    Cold Spring Harb Perspect Biol; 2019 Sep; 11(9):. PubMed ID: 30745292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.