These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32520063)

  • 1. Tip dependence of three-dimensional scanning force microscopy images of calcite-water interfaces investigated by simulation and experiments.
    Miyazawa K; Tracey J; Reischl B; Spijker P; Foster AS; Rohl AL; Fukuma T
    Nanoscale; 2020 Jun; 12(24):12856-12868. PubMed ID: 32520063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy.
    Miyazawa K; Kobayashi N; Watkins M; Shluger AL; Amano K; Fukuma T
    Nanoscale; 2016 Apr; 8(13):7334-42. PubMed ID: 26980273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces.
    Miyazawa K; Watkins M; Shluger AL; Fukuma T
    Nanotechnology; 2017 Jun; 28(24):245701. PubMed ID: 28481216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy.
    Asakawa H; Yoshioka S; Nishimura K; Fukuma T
    ACS Nano; 2012 Oct; 6(10):9013-20. PubMed ID: 23013290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips.
    Wastl DS; Judmann M; Weymouth AJ; Giessibl FJ
    ACS Nano; 2015; 9(4):3858-65. PubMed ID: 25816927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.
    Kobayashi K; Liang Y; Amano K; Murata S; Matsuoka T; Takahashi S; Nishi N; Sakka T
    Langmuir; 2016 Apr; 32(15):3608-16. PubMed ID: 27018633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy.
    Fukuma T
    Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy.
    Söngen H; Reischl B; Miyata K; Bechstein R; Raiteri P; Rohl AL; Gale JD; Fukuma T; Kühnle A
    Phys Rev Lett; 2018 Mar; 120(11):116101. PubMed ID: 29601750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of the scanning (atomic) force microscope with gold particles.
    Xu S; Arnsdorf MF
    J Microsc; 1994 Mar; 173(Pt 3):199-210. PubMed ID: 8189445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water molecule clusters measured at water/air interfaces using atomic force microscopy.
    Teschke O; de Souza EF
    Phys Chem Chem Phys; 2005 Nov; 7(22):3856-65. PubMed ID: 16358037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy.
    Fukuma T; Ueda Y; Yoshioka S; Asakawa H
    Phys Rev Lett; 2010 Jan; 104(1):016101. PubMed ID: 20366372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy.
    Fukuma T
    Sci Technol Adv Mater; 2010 Jun; 11(3):033003. PubMed ID: 27877337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration force in the atomic force microscope: A computational study.
    Ho R; Yuan JY; Shao Z
    Biophys J; 1998 Aug; 75(2):1076-83. PubMed ID: 9675209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and stability of semiconductor tip apexes for atomic force microscopy.
    Pou P; Ghasemi SA; Jelinek P; Lenosky T; Goedecker S; Perez R
    Nanotechnology; 2009 Jul; 20(26):264015. PubMed ID: 19509446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular features of hydration layers probed by atomic force microscopy.
    Zhang Z; Ryu S; Ahn Y; Jang J
    Phys Chem Chem Phys; 2018 Dec; 20(48):30492-30501. PubMed ID: 30511076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and orientation of interfacial water determine atomic force microscopy results: insights from molecular dynamics simulations.
    Argyris D; Ashby PD; Striolo A
    ACS Nano; 2011 Mar; 5(3):2215-23. PubMed ID: 21375261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy.
    Marutschke C; Walters D; Walters D; Hermes I; Bechstein R; Kühnle A
    Nanotechnology; 2014 Aug; 25(33):335703. PubMed ID: 25074402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy.
    Fukuma T; Garcia R
    ACS Nano; 2018 Dec; 12(12):11785-11797. PubMed ID: 30422619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel fractal characteristic of atomic force microscopy images.
    Starodubtseva MN; Starodubtsev IE; Starodubtsev EG
    Micron; 2017 May; 96():96-102. PubMed ID: 28282551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydration Structure at the Calcite-Water (10.4) Interface in the Presence of Rubidium Chloride.
    John S; Kühnle A
    Langmuir; 2022 Sep; 38(38):11691-11698. PubMed ID: 36120896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.