These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 3252031)
21. Excitatory amino acid receptors are involved in morphine-induced synchronous oscillatory discharges in the locus coeruleus of rats. Zhu H; Zhou W Eur J Pharmacol; 2005 Dec; 528(1-3):73-8. PubMed ID: 16316646 [TBL] [Abstract][Full Text] [Related]
22. Carbachol-induced increases in locus coeruleus spontaneous activity are associated with an altered pattern of response to sensory stimuli. Valentino RJ; Aulisi EF Neurosci Lett; 1987 Mar; 74(3):297-303. PubMed ID: 3561884 [TBL] [Abstract][Full Text] [Related]
23. Chronic naltrexone increases opiate binding in brain and produces supersensitivity to morphine in the locus coeruleus of the rat. Bardo MT; Bhatnagar RK; Gebhart GF Brain Res; 1983 Dec; 289(1-2):223-34. PubMed ID: 6318895 [TBL] [Abstract][Full Text] [Related]
24. Acute and chronic effects of the atypical antidepressant, mianserin on brain noradrenergic neurons. Curtis AL; Valentino RJ Psychopharmacology (Berl); 1991; 103(3):330-8. PubMed ID: 2057537 [TBL] [Abstract][Full Text] [Related]
25. Contrasting effects of noradrenergic beta-receptor blockade within the medial septal area on forebrain electroencephalographic and behavioral activity state in anesthetized and unanesthetized rat. Berridge CW; Wifler K Neuroscience; 2000; 97(3):543-52. PubMed ID: 10828536 [TBL] [Abstract][Full Text] [Related]
26. Modulatory effect of locus coeruleus stimulation on visually evoked potentials in freely moving rats. Heller U; Klingberg F Biomed Biochim Acta; 1989; 48(4):269-75. PubMed ID: 2546539 [TBL] [Abstract][Full Text] [Related]
27. Long-latency responses of brain noradrenergic neurons to noxious stimuli are preferentially attenuated by intravenous morphine. Hirata H; Aston-Jones G Brain Res; 1996 Apr; 714(1-2):9-18. PubMed ID: 8861604 [TBL] [Abstract][Full Text] [Related]
28. Spontaneous and auditory-evoked activity of medial agranular cortex as a function of arousal state in the freely moving rat: interaction with locus coeruleus activity. Shinba T; Briois L; Sara SJ Brain Res; 2000 Dec; 887(2):293-300. PubMed ID: 11134618 [TBL] [Abstract][Full Text] [Related]
29. Comparison of the effect of morphine on locus coeruleus noradrenergic and ventral tegmental area dopaminergic neurons in vitro. Seutin V; Franchimont N; Massotte L; Dresse A Life Sci; 1990; 46(25):1879-85. PubMed ID: 2163482 [TBL] [Abstract][Full Text] [Related]
30. Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. Aston-Jones G; Bloom FE J Neurosci; 1981 Aug; 1(8):887-900. PubMed ID: 7346593 [TBL] [Abstract][Full Text] [Related]
31. Presynaptic inhibition of diverse afferents to the locus ceruleus by kappa-opiate receptors: a novel mechanism for regulating the central norepinephrine system. Kreibich A; Reyes BA; Curtis AL; Ecke L; Chavkin C; Van Bockstaele EJ; Valentino RJ J Neurosci; 2008 Jun; 28(25):6516-25. PubMed ID: 18562623 [TBL] [Abstract][Full Text] [Related]
32. Hemodynamic stress activates locus coeruleus neurons of unanesthetized rats. Curtis AL; Drolet G; Valentino RJ Brain Res Bull; 1993; 31(6):737-44. PubMed ID: 8518964 [TBL] [Abstract][Full Text] [Related]
33. Acute morphine induces oscillatory discharge of noradrenergic locus coeruleus neurons in the waking monkey. Aston-Jones G; Rajkowski J; Kubiak P; Akaoka H Neurosci Lett; 1992 Jun; 140(2):219-24. PubMed ID: 1501782 [TBL] [Abstract][Full Text] [Related]
34. Postnatal development of electrical activity in the locus ceruleus. Nakamura S; Kimura F; Sakaguchi T J Neurophysiol; 1987 Sep; 58(3):510-24. PubMed ID: 3655880 [TBL] [Abstract][Full Text] [Related]
35. Comparative effects of sciatic nerve stimulation, blood pressure, and morphine on the activity of A5 and A6 pontine noradrenergic neurons. Guyenet PG; Byrum CE Brain Res; 1985 Feb; 327(1-2):191-201. PubMed ID: 3986498 [TBL] [Abstract][Full Text] [Related]
36. Locus coeruleus unit activity in freely moving cats is increased following systemic morphine administration. Rasmussen K; Jacobs BL Brain Res; 1985 Oct; 344(2):240-8. PubMed ID: 4041875 [TBL] [Abstract][Full Text] [Related]
37. Peripheral, but not local or intracerebroventricular, administration of benzodiazepines attenuates evoked activity of locus coeruleus neurons. Simson PE; Weiss JM Brain Res; 1989 Jun; 490(2):236-42. PubMed ID: 2765862 [TBL] [Abstract][Full Text] [Related]
38. Corticotropin-releasing factor: evidence for a neurotransmitter role in the locus ceruleus during hemodynamic stress. Valentino RJ; Wehby RG Neuroendocrinology; 1988 Dec; 48(6):674-7. PubMed ID: 2908000 [TBL] [Abstract][Full Text] [Related]
39. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Foote SL; Aston-Jones G; Bloom FE Proc Natl Acad Sci U S A; 1980 May; 77(5):3033-7. PubMed ID: 6771765 [TBL] [Abstract][Full Text] [Related]
40. Morphine induces synchronous oscillatory discharges in the rat locus coeruleus. Zhu H; Zhou W J Neurosci; 2001 Nov; 21(21):RC179. PubMed ID: 11606659 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]