These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32520558)
61. Does the Sum-Frequency Generation Signal of Aromatic C-H Vibrations Reflect Molecular Orientation? Matsumura F; Yu CC; Yu X; Chiang KY; Seki T; Bonn M; Nagata Y J Phys Chem B; 2023 Jun; 127(23):5288-5294. PubMed ID: 37284731 [TBL] [Abstract][Full Text] [Related]
62. Entropically mediated polyolefin blend segregation at buried sapphire and air interfaces investigated by infrared-visible sum frequency generation vibrational spectroscopy. Kweskin SJ; Komvopoulos K; Somorjai GA J Phys Chem B; 2005 Dec; 109(49):23415-8. PubMed ID: 16375314 [TBL] [Abstract][Full Text] [Related]
63. Validation of Spectra and Phase in Sub-1 cm(-1) Resolution Sum-Frequency Generation Vibrational Spectroscopy through Internal Heterodyne Phase-Resolved Measurement. Fu L; Chen SL; Wang HF J Phys Chem B; 2016 Mar; 120(8):1579-89. PubMed ID: 26509581 [TBL] [Abstract][Full Text] [Related]
64. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study. Fischer SA; Ueltschi TW; El-Khoury PZ; Mifflin AL; Hess WP; Wang HF; Cramer CJ; Govind N J Phys Chem B; 2016 Mar; 120(8):1429-36. PubMed ID: 26222601 [TBL] [Abstract][Full Text] [Related]
65. Water Bending Mode at the Water-Vapor Interface Probed by Sum-Frequency Generation Spectroscopy: A Combined Molecular Dynamics Simulation and Experimental Study. Nagata Y; Hsieh CS; Hasegawa T; Voll J; Backus EH; Bonn M J Phys Chem Lett; 2013 Jun; 4(11):1872-7. PubMed ID: 26283123 [TBL] [Abstract][Full Text] [Related]
66. Temperature Dependence of the Air/Water Interface Revealed by Polarization Sensitive Sum-Frequency Generation Spectroscopy. Moberg DR; Straight SC; Paesani F J Phys Chem B; 2018 Apr; 122(15):4356-4365. PubMed ID: 29614228 [TBL] [Abstract][Full Text] [Related]
67. Dual Approach to Vibrational Spectra in Solution: Microscopic Influence of Hydrogen Bonding to the State of Motion of Glycine in Water. Kitamura Y; Takenaka N; Koyano Y; Nagaoka M J Chem Theory Comput; 2014 Aug; 10(8):3369-79. PubMed ID: 26588305 [TBL] [Abstract][Full Text] [Related]
68. Vibrational sum-frequency generation activity of a 2,4-dinitrophenyl phospholipid hybrid bilayer: retrieving orientational parameters from a DFT analysis of experimental data. Lis D; Guthmuller J; Champagne B; Humbert C; Busson B; Peremans A; Cecchet F Chemphyschem; 2013 Apr; 14(6):1227-36. PubMed ID: 23554335 [TBL] [Abstract][Full Text] [Related]
69. Vibrational Mode Assignment of α-Pinene by Isotope Editing: One Down, Seventy-One To Go. Upshur MA; Chase HM; Strick BF; Ebben CJ; Fu L; Wang H; Thomson RJ; Geiger FM J Phys Chem A; 2016 May; 120(17):2684-90. PubMed ID: 27063197 [TBL] [Abstract][Full Text] [Related]
70. Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer. Nihonyanagi S; Eftekhari-Bafrooei A; Borguet E J Chem Phys; 2011 Feb; 134(8):084701. PubMed ID: 21361550 [TBL] [Abstract][Full Text] [Related]
71. Water Structure, Dynamics, and Sum-Frequency Generation Spectra at Electrified Graphene Interfaces. Zhang Y; de Aguiar HB; Hynes JT; Laage D J Phys Chem Lett; 2020 Feb; 11(3):624-631. PubMed ID: 31899643 [TBL] [Abstract][Full Text] [Related]
72. Consistency in the sum frequency generation intensity and phase vibrational spectra of the air/neat water interface. Feng RR; Guo Y; Lü R; Velarde L; Wang HF J Phys Chem A; 2011 Jun; 115(23):6015-27. PubMed ID: 21306145 [TBL] [Abstract][Full Text] [Related]
73. Substrate dependent structure of adsorbed aryl isocyanides studied by sum frequency generation (SFG) spectroscopy. Ito M; Noguchi H; Ikeda K; Uosaki K Phys Chem Chem Phys; 2010 Apr; 12(13):3156-63. PubMed ID: 20237704 [TBL] [Abstract][Full Text] [Related]
74. A structural and temporal study of the surfactants behenyltrimethylammonium methosulfate and behenyltrimethylammonium chloride adsorbed at air/water and air/glass interfaces using sum frequency generation spectroscopy. Goussous SA; Casford MTL; Johnson SA; Davies PB J Colloid Interface Sci; 2017 Feb; 488():365-372. PubMed ID: 27846410 [TBL] [Abstract][Full Text] [Related]
75. Structure and dynamics of water at water-graphene and water-hexagonal boron-nitride sheet interfaces revealed by ab initio sum-frequency generation spectroscopy. Ohto T; Tada H; Nagata Y Phys Chem Chem Phys; 2018 May; 20(18):12979-12985. PubMed ID: 29707716 [TBL] [Abstract][Full Text] [Related]
76. Hydrogen-Bond Networks near Supported Lipid Bilayers from Vibrational Sum Frequency Generation Experiments and Atomistic Simulations. Doǧangün M; Ohno PE; Liang D; McGeachy AC; Bé AG; Dalchand N; Li T; Cui Q; Geiger FM J Phys Chem B; 2018 May; 122(18):4870-4879. PubMed ID: 29688732 [TBL] [Abstract][Full Text] [Related]
77. Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface. Yamaguchi S J Chem Phys; 2015 Jul; 143(3):034202. PubMed ID: 26203020 [TBL] [Abstract][Full Text] [Related]
78. Molecular structure and OH-stretch spectra of liquid water surface. Buch V J Phys Chem B; 2005 Sep; 109(38):17771-4. PubMed ID: 16853275 [TBL] [Abstract][Full Text] [Related]
79. Femtosecond time-resolved and two-dimensional vibrational sum frequency spectroscopic instrumentation to study structural dynamics at interfaces. Ghosh A; Smits M; Bredenbeck J; Dijkhuizen N; Bonn M Rev Sci Instrum; 2008 Sep; 79(9):093907. PubMed ID: 19044428 [TBL] [Abstract][Full Text] [Related]