BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 32520609)

  • 1. ARF family GTPases with links to cilia.
    Fisher S; Kuna D; Caspary T; Kahn RA; Sztul E
    Am J Physiol Cell Physiol; 2020 Aug; 319(2):C404-C418. PubMed ID: 32520609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular views of Arf-like small GTPases in cilia and ciliopathies.
    Zhang Q; Hu J; Ling K
    Exp Cell Res; 2013 Sep; 319(15):2316-22. PubMed ID: 23548655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ARL3 activation requires the co-GEF BART and effector-mediated turnover.
    ElMaghloob Y; Sot B; McIlwraith MJ; Garcia E; Yelland T; Ismail S
    Elife; 2021 Jan; 10():. PubMed ID: 33438581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small GTPases in hedgehog signalling: emerging insights into the disease mechanisms of Rab23-mediated and Arl13b-mediated ciliopathies.
    Hor CH; Goh EL
    Curr Opin Genet Dev; 2019 Jun; 56():61-68. PubMed ID: 31465935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization of purified mammalian ARL13B protein indicates that it is an atypical GTPase and ARL3 guanine nucleotide exchange factor (GEF).
    Ivanova AA; Caspary T; Seyfried NT; Duong DM; West AB; Liu Z; Kahn RA
    J Biol Chem; 2017 Jun; 292(26):11091-11108. PubMed ID: 28487361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single class of ARF GTPase activated by several pathway-specific ARF-GEFs regulates essential membrane traffic in Arabidopsis.
    Singh MK; Richter S; Beckmann H; Kientz M; Stierhof YD; Anders N; Fäßler F; Nielsen M; Knöll C; Thomann A; Franz-Wachtel M; Macek B; Skriver K; Pimpl P; Jürgens G
    PLoS Genet; 2018 Nov; 14(11):e1007795. PubMed ID: 30439956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arf family GTPases: roles in membrane traffic and microtubule dynamics.
    Kahn RA; Volpicelli-Daley L; Bowzard B; Shrivastava-Ranjan P; Li Y; Zhou C; Cunningham L
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1269-72. PubMed ID: 16246095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ARF GAPs ELMOD1 and ELMOD3 act at the Golgi and cilia to regulate ciliogenesis and ciliary protein traffic.
    Turn RE; Hu Y; Dewees SI; Devi N; East MP; Hardin KR; Khatib T; Linnert J; Wolfrum U; Lim MJ; Casanova JE; Caspary T; Kahn RA
    Mol Biol Cell; 2022 Feb; 33(2):ar13. PubMed ID: 34818063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers.
    Jones S; Jedd G; Kahn RA; Franzusoff A; Bartolini F; Segev N
    Genetics; 1999 Aug; 152(4):1543-56. PubMed ID: 10430582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ArfGAP1 acts as a GTPase-activating protein for human ADP-ribosylation factor-like 1 protein.
    Feng HP; Cheng HY; Hsiao TF; Lin TW; Hsu JW; Huang LH; Yu CJ
    FASEB J; 2021 Apr; 35(4):e21337. PubMed ID: 33715220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rabs and other small GTPases in ciliary transport.
    Lim YS; Chua CE; Tang BL
    Biol Cell; 2011 May; 103(5):209-21. PubMed ID: 21488838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ARF family G proteins and their regulators: roles in membrane transport, development and disease.
    Donaldson JG; Jackson CL
    Nat Rev Mol Cell Biol; 2011 Jun; 12(6):362-75. PubMed ID: 21587297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emerging role of Arf/Arl small GTPases in cilia and ciliopathies.
    Li Y; Ling K; Hu J
    J Cell Biochem; 2012 Jul; 113(7):2201-7. PubMed ID: 22389062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel C-terminal motif within Sec7 domain of guanine nucleotide exchange factors regulates ADP-ribosylation factor (ARF) binding and activation.
    Lowery J; Szul T; Seetharaman J; Jian X; Su M; Forouhar F; Xiao R; Acton TB; Montelione GT; Lin H; Wright JW; Lee E; Holloway ZG; Randazzo PA; Tong L; Sztul E
    J Biol Chem; 2011 Oct; 286(42):36898-906. PubMed ID: 21828055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of recombinant ELMOD (cell engulfment and motility domain) proteins as GTPase-activating proteins (GAPs) for ARF family GTPases.
    Ivanova AA; East MP; Yi SL; Kahn RA
    J Biol Chem; 2014 Apr; 289(16):11111-11121. PubMed ID: 24616099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guanine nucleotide-exchange factors for arf GTPases: their diverse functions in membrane traffic.
    Shin HW; Nakayama K
    J Biochem; 2004 Dec; 136(6):761-7. PubMed ID: 15671486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans.
    Li Y; Kelly WG; Logsdon JM; Schurko AM; Harfe BD; Hill-Harfe KL; Kahn RA
    FASEB J; 2004 Dec; 18(15):1834-50. PubMed ID: 15576487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants.
    Memon AR
    Biochim Biophys Acta; 2004 Jul; 1664(1):9-30. PubMed ID: 15238254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RABL2 promotes the outward transition zone passage of signaling proteins in cilia via ARL3.
    Zhang RK; Sun WY; Liu YX; Zhang EY; Fan ZC
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2302603120. PubMed ID: 37579161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulators and Effectors of Arf GTPases in Neutrophils.
    Gamara J; Chouinard F; Davis L; Aoudjit F; Bourgoin SG
    J Immunol Res; 2015; 2015():235170. PubMed ID: 26609537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.