These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 32520672)

  • 41. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 42. LPI-HyADBS: a hybrid framework for lncRNA-protein interaction prediction integrating feature selection and classification.
    Zhou L; Duan Q; Tian X; Xu H; Tang J; Peng L
    BMC Bioinformatics; 2021 Nov; 22(1):568. PubMed ID: 34836494
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sequence-based prediction of protein protein interaction using a deep-learning algorithm.
    Sun T; Zhou B; Lai L; Pei J
    BMC Bioinformatics; 2017 May; 18(1):277. PubMed ID: 28545462
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Imbalance Data Processing Strategy for Protein Interaction Sites Prediction.
    Wang B; Mei C; Wang Y; Zhou Y; Cheng MT; Zheng CH; Wang L; Zhang J; Chen P; Xiong Y
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):985-994. PubMed ID: 31751283
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In silico Protein-Protein Interaction prediction with sequence alignment and classifier stacking.
    Marini S; Xu Q; Yang Q
    Curr Protein Pept Sci; 2011 Nov; 12(7):614-20. PubMed ID: 21827427
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DCSE:Double-Channel-Siamese-Ensemble model for protein protein interaction prediction.
    Chen W; Wang S; Song T; Li X; Han P; Gao C
    BMC Genomics; 2022 Aug; 23(1):555. PubMed ID: 35922751
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Protein Structural Class Prediction Using Effective Feature Modeling and Ensemble of Classifiers.
    Bankapur S; Patil N
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2409-2419. PubMed ID: 32149653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting protein-binding regions in RNA using nucleotide profiles and compositions.
    Choi D; Park B; Chae H; Lee W; Han K
    BMC Syst Biol; 2017 Mar; 11(Suppl 2):16. PubMed ID: 28361677
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Human protein-protein interaction prediction by a novel sequence-based co-evolution method: co-evolutionary divergence.
    Hsin Liu C; Li KC; Yuan S
    Bioinformatics; 2013 Jan; 29(1):92-8. PubMed ID: 23080115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Homology-based prediction of interactions between proteins using Averaged One-Dependence Estimators.
    Murakami Y; Mizuguchi K
    BMC Bioinformatics; 2014 Jun; 15():213. PubMed ID: 24953126
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PPI-Detect: A support vector machine model for sequence-based prediction of protein-protein interactions.
    Romero-Molina S; Ruiz-Blanco YB; Harms M; Münch J; Sanchez-Garcia E
    J Comput Chem; 2019 Apr; 40(11):1233-1242. PubMed ID: 30768790
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amalgamation of 3D structure and sequence information for protein-protein interaction prediction.
    Jha K; Saha S
    Sci Rep; 2020 Nov; 10(1):19171. PubMed ID: 33154416
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities.
    Fernando PC; Mabee PM; Zeng E
    BMC Bioinformatics; 2020 Oct; 21(1):442. PubMed ID: 33028186
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PPIcons: identification of protein-protein interaction sites in selected organisms.
    Sriwastava BK; Basu S; Maulik U; Plewczynski D
    J Mol Model; 2013 Sep; 19(9):4059-70. PubMed ID: 23729008
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using Weighted Extreme Learning Machine Combined With Scale-Invariant Feature Transform to Predict Protein-Protein Interactions From Protein Evolutionary Information.
    Li J; Shi X; You ZH; Yi HC; Chen Z; Lin Q; Fang M
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1546-1554. PubMed ID: 31940546
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of RNA-binding amino acids from protein and RNA sequences.
    Choi S; Han K
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S7. PubMed ID: 22373313
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting Protein-Protein Interaction Sites with a Novel Membership Based Fuzzy SVM Classifier.
    Sriwastava BK; Basu S; Maulik U
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1394-404. PubMed ID: 26684462
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MaTPIP: A deep-learning architecture with eXplainable AI for sequence-driven, feature mixed protein-protein interaction prediction.
    Ghosh S; Mitra P
    Comput Methods Programs Biomed; 2024 Feb; 244():107955. PubMed ID: 38064959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.