BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32521276)

  • 1. Unique and Shared Roles for Histone H3K36 Methylation States in Transcription Regulation Functions.
    DiFiore JV; Ptacek TS; Wang Y; Li B; Simon JM; Strahl BD
    Cell Rep; 2020 Jun; 31(10):107751. PubMed ID: 32521276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Set2-mediated H3K36 methylation states redundantly repress the production of antisense transcripts: role in transcription regulation.
    Mei YC; Feng J; He F; Li YM; Liu Y; Li F; Chen Y; Du HN
    FEBS Open Bio; 2021 Aug; 11(8):2225-2235. PubMed ID: 34115924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H3K36 Methylation Regulates Nutrient Stress Response in Saccharomyces cerevisiae by Enforcing Transcriptional Fidelity.
    McDaniel SL; Hepperla AJ; Huang J; Dronamraju R; Adams AT; Kulkarni VG; Davis IJ; Strahl BD
    Cell Rep; 2017 Jun; 19(11):2371-2382. PubMed ID: 28614721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast.
    Suzuki S; Kato H; Suzuki Y; Chikashige Y; Hiraoka Y; Kimura H; Nagao K; Obuse C; Takahata S; Murakami Y
    Nucleic Acids Res; 2016 May; 44(9):4147-62. PubMed ID: 26792892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36.
    Youdell ML; Kizer KO; Kisseleva-Romanova E; Fuchs SM; Duro E; Strahl BD; Mellor J
    Mol Cell Biol; 2008 Aug; 28(16):4915-26. PubMed ID: 18541663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae.
    Sorenson MR; Jha DK; Ucles SA; Flood DM; Strahl BD; Stevens SW; Kress TL
    RNA Biol; 2016; 13(4):412-26. PubMed ID: 26821844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional specificity of H3K36 methylation.
    Lam UTF; Tan BKY; Poh JJX; Chen ES
    Epigenetics Chromatin; 2022 May; 15(1):17. PubMed ID: 35581654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Set2 family regulates mycotoxin metabolism and virulence via H3K36 methylation in pathogenic fungus
    Zhuang Z; Pan X; Zhang M; Liu Y; Huang C; Li Y; Hao L; Wang S
    Virulence; 2022 Dec; 13(1):1358-1378. PubMed ID: 35943142
    [No Abstract]   [Full Text] [Related]  

  • 9. Changes in histone H3 lysine 36 methylation in porcine oocytes and preimplantation embryos.
    Diao YF; Oqani RK; Li XX; Lin T; Kang JW; Jin DI
    PLoS One; 2014; 9(6):e100205. PubMed ID: 24927323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding histone H3 lysine 36 methylation and its deregulation in disease.
    Li J; Ahn JH; Wang GG
    Cell Mol Life Sci; 2019 Aug; 76(15):2899-2916. PubMed ID: 31147750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila.
    Bell O; Wirbelauer C; Hild M; Scharf AN; Schwaiger M; MacAlpine DM; Zilbermann F; van Leeuwen F; Bell SP; Imhof A; Garza D; Peters AH; Schübeler D
    EMBO J; 2007 Dec; 26(24):4974-84. PubMed ID: 18007591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes.
    Venkatesh S; Smolle M; Li H; Gogol MM; Saint M; Kumar S; Natarajan K; Workman JL
    Nature; 2012 Sep; 489(7416):452-5. PubMed ID: 22914091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shaping the cellular landscape with Set2/SETD2 methylation.
    McDaniel SL; Strahl BD
    Cell Mol Life Sci; 2017 Sep; 74(18):3317-3334. PubMed ID: 28386724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved genetic interaction between Spt6 and Set2 regulates H3K36 methylation.
    Gopalakrishnan R; Marr SK; Kingston RE; Winston F
    Nucleic Acids Res; 2019 May; 47(8):3888-3903. PubMed ID: 30793188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond.
    Molenaar TM; van Leeuwen F
    Cell Mol Life Sci; 2022 Jun; 79(6):346. PubMed ID: 35661267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2.
    Chu Y; Sutton A; Sternglanz R; Prelich G
    Mol Cell Biol; 2006 Apr; 26(8):3029-38. PubMed ID: 16581778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optogenetic switch for the Set2 methyltransferase provides evidence for transcription-dependent and -independent dynamics of H3K36 methylation.
    Lerner AM; Hepperla AJ; Keele GR; Meriesh HA; Yumerefendi H; Restrepo D; Zimmerman S; Bear JE; Kuhlman B; Davis IJ; Strahl BD
    Genome Res; 2020 Nov; 30(11):1605-1617. PubMed ID: 33020206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and maintenance of histone H3 lysine 36 trimethylation in transcribed locus.
    Sein H; Värv S; Kristjuhan A
    PLoS One; 2015; 10(3):e0120200. PubMed ID: 25774516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana.
    Xu L; Zhao Z; Dong A; Soubigou-Taconnat L; Renou JP; Steinmetz A; Shen WH
    Mol Cell Biol; 2008 Feb; 28(4):1348-60. PubMed ID: 18070919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA polymerase II carboxyl-terminal domain phosphorylation regulates protein stability of the Set2 methyltransferase and histone H3 di- and trimethylation at lysine 36.
    Fuchs SM; Kizer KO; Braberg H; Krogan NJ; Strahl BD
    J Biol Chem; 2012 Jan; 287(5):3249-56. PubMed ID: 22157004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.