These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 32521320)
1. Infiltration properties of n-alkanes in mesoporous biochar: The capacity of smokeless support for stability and energy storage. Atinafu DG; Chang SJ; Kim S J Hazard Mater; 2020 Nov; 399():123041. PubMed ID: 32521320 [TBL] [Abstract][Full Text] [Related]
2. Use of biochar co-mediated chitosan mesopores to encapsulate alkane and improve thermal properties. Atinafu DG; Yang S; Yun BY; Kang Y; Kim S Environ Res; 2022 Sep; 212(Pt D):113539. PubMed ID: 35623444 [TBL] [Abstract][Full Text] [Related]
3. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities. Atinafu DG; Yun BY; Wi S; Kang Y; Kim S Environ Res; 2021 Apr; 195():110853. PubMed ID: 33567299 [TBL] [Abstract][Full Text] [Related]
4. Effects of biochar pyrolysis temperature on thermal properties of polyethylene glycol/biochar composites as shape-stable biocomposite phase change materials. Liu S; Peng S; Zhang B; Xue B; Yang Z; Wang S; Xu G RSC Adv; 2022 Mar; 12(16):9587-9598. PubMed ID: 35424955 [TBL] [Abstract][Full Text] [Related]
5. Energy storage and key derives of octadecane thermal stability during phase change assembly with animal manure-derived biochar. Atinafu DG; Choi JY; Yun BY; Nam J; Kim HB; Kim S Environ Res; 2024 Jan; 240(Pt 1):117405. PubMed ID: 37838193 [TBL] [Abstract][Full Text] [Related]
6. Energy-efficient biochar production for thermal backfill applications. Patwa D; Bordoloi U; Dubey AA; Ravi K; Sekharan S; Kalita P Sci Total Environ; 2022 Aug; 833():155253. PubMed ID: 35429570 [TBL] [Abstract][Full Text] [Related]
7. Alkylated Nanofibrillated Cellulose/Carbon Nanotubes Aerogels Supported Form-Stable Phase Change Composites with Improved Du X; Qiu J; Deng S; Du Z; Cheng X; Wang H ACS Appl Mater Interfaces; 2020 Feb; 12(5):5695-5703. PubMed ID: 31920067 [TBL] [Abstract][Full Text] [Related]
8. Preparation and Characterization of Paraffin/Mesoporous Silica Shape-Stabilized Phase Change Materials for Building Thermal Insulation. Li Y; Dong M; Song W; Liang X; Chen Y; Liu Y Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916813 [TBL] [Abstract][Full Text] [Related]
9. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential. Ahmad M; Ahmad M; Usman ARA; Al-Faraj AS; Abduljabbar A; Ok YS; Al-Wabel MI Environ Geochem Health; 2019 Aug; 41(4):1687-1704. PubMed ID: 28337620 [TBL] [Abstract][Full Text] [Related]
10. Characterization of biocomposite using coconut oil impregnated biochar as latent heat storage insulation. Jeon J; Park JH; Wi S; Yang S; Ok YS; Kim S Chemosphere; 2019 Dec; 236():124269. PubMed ID: 31319304 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Pariyar P; Kumari K; Jain MK; Jadhao PS Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240 [TBL] [Abstract][Full Text] [Related]
12. Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass. Anstey A; Vivekanandhan S; Rodriguez-Uribe A; Misra M; Mohanty AK Sci Total Environ; 2016 Apr; 550():241-247. PubMed ID: 26820927 [TBL] [Abstract][Full Text] [Related]
13. Effect of GO on the Structure and Properties of PEG/Biochar Phase Change Composites. Chen W; Zhang B; Wang S; Xue B; Liu S; An M; Yang Z; Xu G Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850246 [TBL] [Abstract][Full Text] [Related]
14. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.). Angin D; Sensöz S Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878 [TBL] [Abstract][Full Text] [Related]
15. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil? Břendová K; Száková J; Lhotka M; Krulikovská T; Punčochář M; Tlustoš P Environ Geochem Health; 2017 Dec; 39(6):1381-1395. PubMed ID: 28664248 [TBL] [Abstract][Full Text] [Related]
16. Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials. Jeon J; Park JH; Wi S; Yang S; Ok YS; Kim S Environ Res; 2019 May; 172():637-648. PubMed ID: 30878735 [TBL] [Abstract][Full Text] [Related]
17. Potential utility of HKUST-1-graphite nanocomposite to endow alkane with high thermal properties and low electrical resistivity. Atinafu DG; Chang SJ; Berardi U; Kim KH; Kim S J Hazard Mater; 2021 Jan; 402():123695. PubMed ID: 33254751 [TBL] [Abstract][Full Text] [Related]
18. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Li Y; Xing B; Ding Y; Han X; Wang S Bioresour Technol; 2020 Sep; 312():123614. PubMed ID: 32517889 [TBL] [Abstract][Full Text] [Related]
19. Updated results on the integration of metal-organic framework with functional materials toward n-alkane for latent heat retention and reliability. Atinafu DG; Yun BY; Yang S; Kang Y; Kim S J Hazard Mater; 2022 Feb; 423(Pt B):127147. PubMed ID: 34560485 [TBL] [Abstract][Full Text] [Related]
20. Catalytic pyrolysis of cellulose with biochar modified by Ni-Co-Mn cathode material recovered from spent lithium-ion battery. Shen Y; Chen L Chemosphere; 2022 Oct; 305():135430. PubMed ID: 35772519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]