These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32521444)

  • 1. Systematic study of synthesizing various heteroatom-substituted rhodamines from diaryl ether analogues.
    Deng F; Liu L; Huang W; Huang C; Qiao Q; Xu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 240():118466. PubMed ID: 32521444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General Synthetic Method for Si-Fluoresceins and Si-Rhodamines.
    Grimm JB; Brown TA; Tkachuk AN; Lavis LD
    ACS Cent Sci; 2017 Sep; 3(9):975-985. PubMed ID: 28979939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.
    Kolmakov K; Wurm CA; Meineke DN; Göttfert F; Boyarskiy VP; Belov VN; Hell SW
    Chemistry; 2014 Jan; 20(1):146-57. PubMed ID: 24338798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general approach to S-rhodamines from diaryl thioethers and their application in constructing pH probes.
    Sun D; Yang S; Ma J; Liu C; Sun J; Li Y; Deng F
    Org Biomol Chem; 2022 Jul; 20(29):5694-5698. PubMed ID: 35820176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy.
    Grimm JB; Klein T; Kopek BG; Shtengel G; Hess HF; Sauer M; Lavis LD
    Angew Chem Int Ed Engl; 2016 Jan; 55(5):1723-7. PubMed ID: 26661345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon functionalization expands the repertoire of Si-rhodamine fluorescent probes.
    Rao DN; Ji X; Miller SC
    Chem Sci; 2022 May; 13(20):6081-6088. PubMed ID: 35685786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effects of Heteroatoms Si and S on Tuning the Optical Properties of Rhodamine- and Fluorescein-Based Fluorescence Probes: A Theoretical Analysis.
    Zhou P; Ning C; Alsaedi A; Han K
    Chemphyschem; 2016 Oct; 17(19):3139-3145. PubMed ID: 27459670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfone-Rhodamines: A New Class of Near-Infrared Fluorescent Dyes for Bioimaging.
    Liu J; Sun YQ; Zhang H; Shi H; Shi Y; Guo W
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22953-62. PubMed ID: 27548811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.
    Koide Y; Urano Y; Hanaoka K; Terai T; Nagano T
    ACS Chem Biol; 2011 Jun; 6(6):600-8. PubMed ID: 21375253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Infrared Phosphorus-Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging.
    Chai X; Cui X; Wang B; Yang F; Cai Y; Wu Q; Wang T
    Chemistry; 2015 Nov; 21(47):16754-8. PubMed ID: 26420515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
    Sun YQ; Liu J; Lv X; Liu Y; Zhao Y; Guo W
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7634-6. PubMed ID: 22674799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodols - synthesis, photophysical properties and applications as fluorescent probes.
    Poronik YM; Vygranenko KV; Gryko D; Gryko DT
    Chem Soc Rev; 2019 Oct; 48(20):5242-5265. PubMed ID: 31549709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red fluorescent scaffold for highly sensitive protease activity probes.
    Kushida Y; Hanaoka K; Komatsu T; Terai T; Ueno T; Yoshida K; Uchiyama M; Nagano T
    Bioorg Med Chem Lett; 2012 Jun; 22(12):3908-11. PubMed ID: 22607681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homoadamantane-Fused Tetrahydroquinoxaline as a Robust Electron-Donating Unit for High-Performance Asymmetric NIR Rhodamine Development.
    Chen Z; Yang L; Xu W; Xu F; Sheng J; Xiao Q; Song X; Chen W
    Anal Chem; 2023 Feb; 95(6):3325-3331. PubMed ID: 36716181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substituent effects on the turn-on kinetics of rhodamine-based fluorescent pH probes.
    Czaplyski WL; Purnell GE; Roberts CA; Allred RM; Harbron EJ
    Org Biomol Chem; 2014 Jan; 12(3):526-33. PubMed ID: 24287714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of Novel Dark Quenchers and Their Application to Imaging Probes].
    Hanaoka K
    Yakugaku Zasshi; 2019; 139(2):277-283. PubMed ID: 30713240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red-emitting rhodamines with hydroxylated, sulfonated, and phosphorylated dye residues and their use in fluorescence nanoscopy.
    Kolmakov K; Wurm CA; Hennig R; Rapp E; Jakobs S; Belov VN; Hell SW
    Chemistry; 2012 Oct; 18(41):12986-98. PubMed ID: 22968960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of covalently Nile Red and covalently Rhodamine labeled fluorescent polymer micelles for the improved imaging of the respective drug delivery system.
    Trubitsyn G; Nguyen VN; Di Tommaso C; Borchard G; Gurny R; Möller M
    Eur J Pharm Biopharm; 2019 Sep; 142():480-487. PubMed ID: 31336183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Characterization of ROSA Dye - A Rhodamine B-type Fluorophore, Suitable for Bioconjugation and Fluorescence Studies in Live Cells.
    Rubio V; Iragavarapu V; Stawikowski MJ
    Protein Pept Lett; 2019; 26(10):758-767. PubMed ID: 31215362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Factors Regulate the Spirocyclization Equilibrium of Si-Rhodamines.
    Deng F; Qiao Q; Li J; Yin W; Miao L; Liu X; Xu Z
    J Phys Chem B; 2020 Aug; 124(34):7467-7474. PubMed ID: 32790386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.