These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32521517)

  • 1. Load alleviation of feather-inspired compliant airfoils for instantaneous flow control.
    Gamble LL; Harvey C; Inman DJ
    Bioinspir Biomim; 2020 Oct; 15(5):. PubMed ID: 32521517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive aeroelastic deflection of avian primary feathers.
    Klaassen van Oorschot B; Choroszucha R; Tobalske BW
    Bioinspir Biomim; 2020 Jul; 15(5):056008. PubMed ID: 32470956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of a passive control of airfoil lift using bioinspired feather flap.
    Wang L; Alam MM; Zhou Y
    Bioinspir Biomim; 2019 Sep; 14(6):066005. PubMed ID: 31434057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired morphing wings: mechanical design and wind tunnel experiments.
    Kilian L; Shahid F; Zhao JS; Nayeri CN
    Bioinspir Biomim; 2022 Jul; 17(4):. PubMed ID: 35609562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feather roughness reduces flow separation during low Reynolds number glides of swifts.
    van Bokhorst E; de Kat R; Elsinga GE; Lentink D
    J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covert-inspired flaps for lift enhancement and stall mitigation.
    Duan C; Wissa A
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33784648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.
    Johnston J; Gopalarathnam A
    Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion.
    Chang E; Matloff LY; Stowers AK; Lentink D
    Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing.
    Hieronymus TL
    J Anat; 2016 Nov; 229(5):631-656. PubMed ID: 27320170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations.
    Zhao M; Cao H; Zhang M; Liao C; Zhou T
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34020442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.
    Winzen A; Roidl B; Schröder W
    Bioinspir Biomim; 2016 Apr; 11(2):026005. PubMed ID: 27033298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analytical model and scaling of chordwise flexible flapping wings in forward flight.
    Kodali D; Kang CK
    Bioinspir Biomim; 2016 Dec; 12(1):016006. PubMed ID: 27958194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic Analysis of Camber Morphing Airfoils in Transition via Computational Fluid Dynamics.
    Jo BW; Majid T
    Biomimetics (Basel); 2022 Apr; 7(2):. PubMed ID: 35645179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogeny of lift and drag production in ground birds.
    Heers AM; Tobalske BW; Dial KP
    J Exp Biol; 2011 Mar; 214(Pt 5):717-25. PubMed ID: 21307057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.
    Wang C; Tang H
    Bioinspir Biomim; 2018 May; 13(4):046005. PubMed ID: 29648545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
    Levy DE; Seifert A
    J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.
    Fu J; Liu X; Shyy W; Qiu H
    Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight.
    Lynch M; Mandadzhiev B; Wissa A
    Bioinspir Biomim; 2018 Mar; 13(3):036003. PubMed ID: 29388556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air-permeable hole-pattern and nose-droop control improve aerodynamic performance of primary feathers.
    Eder H; Fiedler W; Pascoe X
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jan; 197(1):109-17. PubMed ID: 20938776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.