These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 32521567)

  • 1. Generative adversarial network-based super-resolution of diffusion-weighted imaging: Application to tumour radiomics in breast cancer.
    Fan M; Liu Z; Xu M; Wang S; Zeng T; Gao X; Li L
    NMR Biomed; 2020 Aug; 33(8):e4345. PubMed ID: 32521567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics Nomogram Based on Dual-Sequence MRI for Assessing Ki-67 Expression in Breast Cancer.
    Zhang L; Shen M; Zhang D; He X; Du Q; Liu N; Huang X
    J Magn Reson Imaging; 2024 Sep; 60(3):1203-1212. PubMed ID: 38088478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint Prediction of Breast Cancer Histological Grade and Ki-67 Expression Level Based on DCE-MRI and DWI Radiomics.
    Fan M; Yuan W; Zhao W; Xu M; Wang S; Gao X; Li L
    IEEE J Biomed Health Inform; 2020 Jun; 24(6):1632-1642. PubMed ID: 31794406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double Transformer Super-Resolution for Breast Cancer ADC Images.
    Yang Y; Xiang T; Lv X; Li L; Lui LM; Zeng T
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):917-928. PubMed ID: 38079366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion Kurtosis at 3.0T as an in vivo Imaging Marker for Breast Cancer Characterization: Correlation With Prognostic Factors.
    Huang Y; Lin Y; Hu W; Ma C; Lin W; Wang Z; Liang J; Ye W; Zhao J; Wu R
    J Magn Reson Imaging; 2019 Mar; 49(3):845-856. PubMed ID: 30260589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invasive ductal breast cancer: preoperative predict Ki-67 index based on radiomics of ADC maps.
    Zhang Y; Zhu Y; Zhang K; Liu Y; Cui J; Tao J; Wang Y; Wang S
    Radiol Med; 2020 Feb; 125(2):109-116. PubMed ID: 31696388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography.
    Bickelhaupt S; Paech D; Kickingereder P; Steudle F; Lederer W; Daniel H; Götz M; Gählert N; Tichy D; Wiesenfarth M; Laun FB; Maier-Hein KH; Schlemmer HP; Bonekamp D
    J Magn Reson Imaging; 2017 Aug; 46(2):604-616. PubMed ID: 28152264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of different stages of rectal cancer: Texture analysis based on diffusion-weighted images and apparent diffusion coefficient maps.
    Yin JD; Song LR; Lu HC; Zheng X
    World J Gastroenterol; 2020 May; 26(17):2082-2096. PubMed ID: 32536776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer.
    Horvat JV; Bernard-Davila B; Helbich TH; Zhang M; Morris EA; Thakur SB; Ochoa-Albiztegui RE; Leithner D; Marino MA; Baltzer PA; Clauser P; Kapetas P; Bago-Horvath Z; Pinker K
    J Magn Reson Imaging; 2019 Sep; 50(3):836-846. PubMed ID: 30811717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
    Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G
    Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of dynamic contrast-enhanced magnetic resonance imaging and T2-weighted imaging radiomic features by a canonical correlation analysis-based feature fusion method to predict histological grade in ductal breast carcinoma.
    Fan M; Liu Z; Xie S; Xu M; Wang S; Gao X; Li L
    Phys Med Biol; 2019 Oct; 64(21):215001. PubMed ID: 31470420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the differential diagnosis of benign and malignant breast lesions using a deep learning model based on multimodal images.
    Du Y; Wang D; Liu M; Zhang X; Ren W; Sun J; Yin C; Yang S; Zhang L
    J Cancer Res Ther; 2024 Apr; 20(2):625-632. PubMed ID: 38687933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prostatic urinary tract visualization with super-resolution deep learning models.
    Yoshimura T; Nishioka K; Hashimoto T; Mori T; Kogame S; Seki K; Sugimori H; Yamashina H; Nomura Y; Kato F; Kudo K; Shimizu S; Aoyama H
    PLoS One; 2023; 18(1):e0280076. PubMed ID: 36607999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations between diffusion-weighted imaging and breast cancer biomarkers.
    Martincich L; Deantoni V; Bertotto I; Redana S; Kubatzki F; Sarotto I; Rossi V; Liotti M; Ponzone R; Aglietta M; Regge D; Montemurro F
    Eur Radiol; 2012 Jul; 22(7):1519-28. PubMed ID: 22411304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion-weighted imaging features of breast tumours and the surrounding stroma reflect intrinsic heterogeneous characteristics of molecular subtypes in breast cancer.
    Fan M; He T; Zhang P; Cheng H; Zhang J; Gao X; Li L
    NMR Biomed; 2018 Feb; 31(2):. PubMed ID: 29244222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes.
    Leithner D; Bernard-Davila B; Martinez DF; Horvat JV; Jochelson MS; Marino MA; Avendano D; Ochoa-Albiztegui RE; Sutton EJ; Morris EA; Thakur SB; Pinker K
    Mol Imaging Biol; 2020 Apr; 22(2):453-461. PubMed ID: 31209778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion tensor imaging for characterizing tumor microstructure and improving diagnostic performance on breast MRI: a prospective observational study.
    Luo J; Hippe DS; Rahbar H; Parsian S; Rendi MH; Partridge SC
    Breast Cancer Res; 2019 Sep; 21(1):102. PubMed ID: 31484577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Dynamic Contrast-Enhanced MRI and Non-Mono-Exponential Model-Based Diffusion-Weighted Imaging for the Prediction of Prognostic Biomarkers and Molecular Subtypes of Breast Cancer Based on Radiomics.
    Zhang L; Zhou XX; Liu L; Liu AY; Zhao WJ; Zhang HX; Zhu YM; Kuai ZX
    J Magn Reson Imaging; 2023 Nov; 58(5):1590-1602. PubMed ID: 36661350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation.
    Liu Y; Zhang Y; Cheng R; Liu S; Qu F; Yin X; Wang Q; Xiao B; Ye Z
    J Magn Reson Imaging; 2019 Jan; 49(1):280-290. PubMed ID: 29761595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.