These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 325217)

  • 1. The rates of evolution in some ribosomal components.
    Hori H; Higo K; Osawa S
    J Mol Evol; 1977 May; 9(3):191-201. PubMed ID: 325217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli 5S RNA binding proteins L18 and L25 interact with 5.8S RNA but not with 5S RNA from yeast ribosomes.
    Wrede P; Erdmann VA
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2706-9. PubMed ID: 142985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence homologies between eukaryotic 5.8S rRNA and the 5' end of prokaryotic 23S rRNa: evidences for a common evolutionary origin.
    Jacq B
    Nucleic Acids Res; 1981 Jun; 9(12):2913-32. PubMed ID: 7024907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro incorporation of eubacterial, archaebacterial and eukaryotic 5S rRNAs into large ribosomal subunits of Bacillus stearothermophilus.
    Hartmann RK; Vogel DW; Walker RT; Erdmann VA
    Nucleic Acids Res; 1988 Apr; 16(8):3511-24. PubMed ID: 2453840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of 50 S ribosomal subunits from Bacillus stearothermophilus with 5 S RNA from spinach chloroplasts and low-Mr RNA from mitochondria of Locusta migratoria and bovine liver.
    Vogel DW; Hartmann RK; Bartsch M; Subramanian AR; Kleinow W; O'Brien TW; Pieler T; Erdmann VA
    FEBS Lett; 1984 Apr; 169(1):67-72. PubMed ID: 6201395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding sites of E. coli and B. stearothermophilus ribosomal proteins on B stearothermophilus 5S RNA.
    Zimmermann J; Erdmann VA
    Nucleic Acids Res; 1978 Jul; 5(7):2267-88. PubMed ID: 353739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terminal-sequence analysis of bacterial ribosomal RNA. Correlation between the 3'-terminal-polypyrimidine sequence of 16-S RNA and translational specificity of the ribosome.
    Shine J; Dalgarno L
    Eur J Biochem; 1975 Sep; 57(1):221-30. PubMed ID: 809282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Procaryotic ribosomal proteins: N-terminal sequence homologies and structural correspondence of 30 S ribosomal proteins from Escherichia coli and Bacillus stearothermophilus.
    Yaguchi M; Matheson AT; Visentin LP
    FEBS Lett; 1974 Sep; 46(1):296-300. PubMed ID: 4607606
    [No Abstract]   [Full Text] [Related]  

  • 9. The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene.
    Chan YL; Olvera J; Wool IG
    Nucleic Acids Res; 1983 Nov; 11(22):7819-31. PubMed ID: 6316273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The complete amino acid sequences of the 5 S rRNA binding proteins L5 and L18 from the moderate thermophile Bacillus stearothermophilus ribosome.
    Kimura J; Kimura M
    FEBS Lett; 1987 Jan; 210(1):85-90. PubMed ID: 3542562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3' terminal sequences of 16S rRNA do not explain translational specificity differences between E. coli and B. stearothermophilus ribosomes.
    Sprague KU; Steitz JA; Grenley RM; Stocking CE
    Nature; 1977 Jun; 267(5610):462-5. PubMed ID: 327330
    [No Abstract]   [Full Text] [Related]  

  • 12. Chemical reactivity of E. coli 5S RNA in situ in the 50S ribosomal subunit.
    Silberklang M; RajBhandary UL; Lück A; Erdmann VA
    Nucleic Acids Res; 1983 Feb; 11(3):605-17. PubMed ID: 6340064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three helical domains form a protein binding site in the 5S RNA-protein complex from eukaryotic ribosomes.
    Nazar RN; Wildeman AG
    Nucleic Acids Res; 1983 May; 11(10):3155-68. PubMed ID: 6344007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency of insertion-deletion, transversion, and transition in the evolution of 5S ribosomal RNA.
    Sankoff D; Cedergren RJ; Lapalme G
    J Mol Evol; 1976 Mar; 7(2):133-49. PubMed ID: 772222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of 5S rRNA, 5S rRNA-protein complexes and ribosomes employing RNase H and d(GTTCGG).
    Lorenz S; Hartmann RK; Piel N; Ulbrich N; Erdmann VA
    Eur J Biochem; 1987 Mar; 163(2):239-46. PubMed ID: 2434327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5S rRNA and t RNA: evidence for a common evolutionary origin.
    Mullins DW; Lacey JC; Hearn RA
    Nat New Biol; 1973 Mar; 242(116):80-2. PubMed ID: 4572533
    [No Abstract]   [Full Text] [Related]  

  • 17. Secondary structure model for 23S ribosomal RNA.
    Noller HF; Kop J; Wheaton V; Brosius J; Gutell RR; Kopylov AM; Dohme F; Herr W; Stahl DA; Gupta R; Waese CR
    Nucleic Acids Res; 1981 Nov; 9(22):6167-89. PubMed ID: 7031608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eukaryotes-prokaryotes divergence estimated by 5S ribosomal RNA sequences.
    Kimura M; Ohta T
    Nat New Biol; 1973 Jun; 243(128):199-200. PubMed ID: 4197569
    [No Abstract]   [Full Text] [Related]  

  • 19. Sequences of 5S ribosomal RNA from Xenopus mulleri and the evolution of 5S gene-coding sequences.
    Ford PJ; Brown RD
    Cell; 1976 Aug; 8(4):485-93. PubMed ID: 986255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of prokaryotic and eukaryotic ribosomes.
    Cox RA
    Prog Biophys Mol Biol; 1977; 32(3):193-231. PubMed ID: 339273
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.