These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32521721)

  • 1. A Comparative Study on Cu
    Humelnicu D; Dragan ES; Ignat M; Dinu MV
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32521721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metals removal from aqueous solutions and wastewaters by using various byproducts.
    Shaheen SM; Eissa FI; Ghanem KM; Gamal El-Din HM; Al Anany FS
    J Environ Manage; 2013 Oct; 128():514-21. PubMed ID: 23831673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of graft copolymers of chitosan with NIPAM and binary monomers for removal of Cr(VI), Cu(II) and Fe(II) metal ions from aqueous solutions.
    Lalita ; Singh AP; Sharma RK
    Int J Biol Macromol; 2017 Jun; 99():409-426. PubMed ID: 28263811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Polyamine-Based Cryogels for Metal Ion Sorption.
    Malakhova I; Privar Y; Parotkina Y; Mironenko A; Eliseikina M; Balatskiy D; Golikov A; Bratskaya S
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33086660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of composite cryobeads based on chitosan and starches-g-PAN as efficient and reusable biosorbents for removal of Cu
    Dragan ES; Loghin DFA
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1872-1883. PubMed ID: 30290252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of heavy metal ions from multi-component aqueous solutions by eco-friendly and low-cost composite sorbents with anisotropic pores.
    Humelnicu D; Lazar MM; Ignat M; Dinu IA; Dragan ES; Dinu MV
    J Hazard Mater; 2020 Jan; 381():120980. PubMed ID: 31442692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-chelate sorbents based on carboxyalkylchitosans: Ciprofloxacin uptake by Cu(II) and Al(III)-chelated cryogels of N-(2-carboxyethyl)chitosan.
    Privar Y; Shashura D; Pestov A; Modin E; Baklykov A; Marinin D; Bratskaya S
    Int J Biol Macromol; 2019 Jun; 131():806-811. PubMed ID: 30904527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of process using carboxymethyl chitosan for the removal of mixed heavy metals from aqueous streams.
    Kavitha E; Kedia R; Babaria N; Prabhakar S; Rajesh MP
    Int J Biol Macromol; 2020 Apr; 149():404-416. PubMed ID: 31935405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of operational parameters on heavy metal removal by electrocoagulation.
    Bhagawan D; Poodari S; Pothuraju T; Srinivasulu D; Shankaraiah G; Yamuna Rani M; Himabindu V; Vidyavathi S
    Environ Sci Pollut Res Int; 2014 Dec; 21(24):14166-73. PubMed ID: 25056749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Cd(II), Co(II), Cr(III), Ni(II), Pb(II) and Zn(II) ions from wastewater using polyethyleneimine (PEI) cryogels.
    Bagdat S; Tokay F; Demirci S; Yilmaz S; Sahiner N
    J Environ Manage; 2023 Mar; 329():117002. PubMed ID: 36527951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron oxides decorated graphene oxide/chitosan composite beads for enhanced Cr(VI) removal from aqueous solution.
    Shan H; Zeng C; Zhao C; Zhan H
    Int J Biol Macromol; 2021 Mar; 172():197-209. PubMed ID: 33453250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carboxymethyl cellulose-based cryogels for efficient heavy metal capture: Aluminum-mediated assembly process and sorption mechanism.
    Li SS; Song YL; Yang HR; An QD; Xiao ZY; Zhai SR
    Int J Biol Macromol; 2020 Dec; 164():3275-3286. PubMed ID: 32853608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption efficiency of chitosan/clinoptilolite (CS/CZ) composite for effective removal of Cd
    Mohammed AN
    Environ Monit Assess; 2024 Jun; 196(7):611. PubMed ID: 38862850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption of chromium, copper and zinc by wine-processing waste sludge: single and multi-component system study.
    Liu CC; Wang MK; Chiou CS; Li YS; Yang CY; Lin YA
    J Hazard Mater; 2009 Nov; 171(1-3):386-92. PubMed ID: 19586716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective sorption of Fe(II) ions over Cu(II) and Cr(VI) ions by cross-linked graft copolymers of chitosan with acrylic acid and binary vinyl monomer mixtures.
    Lalita ; Singh AP; Sharma RK
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):1202-1212. PubMed ID: 28757421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in chitosan-based nanocomposites for adsorption and removal of heavy metal ions.
    Rostami MS; Khodaei MM
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132386. PubMed ID: 38754671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of some heavy metals by CKD leachate.
    Zaki NG; Khattab IA; Abd El-Monem NM
    J Hazard Mater; 2007 Aug; 147(1-2):21-7. PubMed ID: 17275181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.