These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32522)

  • 1. Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex.
    Urbanics R; Leniger-Follert E; Lübbers DW
    Pflugers Arch; 1978 Dec; 378(1):47-53. PubMed ID: 32522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of extracellular H+ and K+ activities during functional hyperemia of microcirculation in the brain cortex.
    Leniger-Follert E; Urbanics R; Lübbers W
    Adv Neurol; 1978; 20():97-101. PubMed ID: 27962
    [No Abstract]   [Full Text] [Related]  

  • 3. Behavior of microflow and local PO2 of the brain cortex during and after direct electrical stimulation. A contribution to the problem of metabolic regulation of microcirculation in the brain.
    Leniger-Follert E; Lübbers DW
    Pflugers Arch; 1976 Oct; 366(1):39-44. PubMed ID: 988570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in extracellular potassium and calcium concentration and neural activity during prolonged electrical stimulation of the cat cerebral cortex at defined charge densities.
    McCreery DB; Agnew WF
    Exp Neurol; 1983 Feb; 79(2):371-96. PubMed ID: 6822270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of regulation of cerebral microflow during bicuculline-induced seizures in anaesthetized cats.
    Leniger-Follert E
    J Cereb Blood Flow Metab; 1984 Jun; 4(2):150-65. PubMed ID: 6725427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral cortical extracellular fluid H+ and K+ activities during hypotension in cats.
    Morris PJ; Heuser D; McDowall DG; Hashiba M; Myers D
    Anesthesiology; 1983 Jul; 59(1):10-8. PubMed ID: 6859606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular pH, potassium, and calcium activities in progressive ischaemia of rat cortex.
    Harris RJ; Symon L
    J Cereb Blood Flow Metab; 1984 Jun; 4(2):178-86. PubMed ID: 6725430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats.
    Lothman E; Lamanna J; Cordingley G; Rosenthal M; Somjen G
    Brain Res; 1975 Apr; 88(1):15-36. PubMed ID: 164265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation-evoked changes in extracellular pH, calcium and potassium activity in the frog spinal cord.
    Chvátal A; Jendelová P; Kríz N; Syková E
    Physiol Bohemoslov; 1988; 37(3):203-12. PubMed ID: 2975788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum.
    Vorísek I; Syková E
    J Cereb Blood Flow Metab; 1997 Feb; 17(2):191-203. PubMed ID: 9040499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat.
    Heinemann U; Lux HD
    Brain Res; 1975 Jul; 93(1):63-76. PubMed ID: 1139318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evoked and spontaneous extracellular potassium shifts in the cerebral cortex of unanaesthetized cats.
    Molnár M; Skinner JE
    Acta Physiol Hung; 1983; 61(4):265-79. PubMed ID: 6316727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [K+]o clearance in cortex: a new analytical model.
    Vern BA; Schuette WH; Thibault LE
    J Neurophysiol; 1977 Sep; 40(5):1015-23. PubMed ID: 143510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The significance of cortical extracellular H+, K+ and Ca2+ activities for regulation of local cerebral blood flow under conditions of enhanced neuronal activity.
    Heuser D
    Ciba Found Symp; 1978 Mar; (56):339-53. PubMed ID: 27342
    [No Abstract]   [Full Text] [Related]  

  • 15. [Changes in the concentration of extracellular potassium in the cerebral cortex with different parameters of electrical stimulation].
    Roĭtbak AI; Ocherashvili IV
    Fiziol Zh SSSR Im I M Sechenova; 1987 Feb; 73(2):277-83. PubMed ID: 3569598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo studies on intracellular pH, focal flow, and vessel diameter in the cat cerebral cortex: effects of altered CO2 and electrical stimulation.
    Yaksh TL; Anderson RE
    J Cereb Blood Flow Metab; 1987 Jun; 7(3):332-41. PubMed ID: 3108271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of microflow in the cat brain during insulin induced hypoglycemia.
    Leniger-Follert E; Gronczewski J; Danz C
    Adv Exp Med Biol; 1984; 169():297-303. PubMed ID: 6375298
    [No Abstract]   [Full Text] [Related]  

  • 18. Phenobarbital actions in vivo: effects on extra cellular potassium activity and oxidative metabolism in cat cerebral cortex.
    LaManna JC; Cordingley G; Rosenthal M
    J Pharmacol Exp Ther; 1977 Mar; 200(3):560-9. PubMed ID: 191589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex.
    Cordingley GE; Somjen GG
    Brain Res; 1978 Aug; 151(2):291-306. PubMed ID: 209864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in the extracellular potassium concentration and the slow negative potential in the cerebral cortex].
    Roĭtbak AI; Makhek I; Pavlik V; Bobrov AV; Ocherashvili IV
    Neirofiziologiia; 1980; 12(5):459-63. PubMed ID: 7422035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.