BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32522994)

  • 21. Mitochondria: Unusual features of the mammalian mitoribosome.
    Richman TR; Rackham O; Filipovska A
    Int J Biochem Cell Biol; 2014 Aug; 53():115-20. PubMed ID: 24842111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5'-terminal AUG.
    Brock JE; Pourshahian S; Giliberti J; Limbach PA; Janssen GR
    RNA; 2008 Oct; 14(10):2159-69. PubMed ID: 18755843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of the 30S translation initiation complex.
    Simonetti A; Marzi S; Myasnikov AG; Fabbretti A; Yusupov M; Gualerzi CO; Klaholz BP
    Nature; 2008 Sep; 455(7211):416-20. PubMed ID: 18758445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the yeast mitochondrial large ribosomal subunit.
    Amunts A; Brown A; Bai XC; Llácer JL; Hussain T; Emsley P; Long F; Murshudov G; Scheres SHW; Ramakrishnan V
    Science; 2014 Mar; 343(6178):1485-1489. PubMed ID: 24675956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution: Mitochondrial Ribosomes Across Species.
    Agrawal RK; Majumdar S
    Methods Mol Biol; 2023; 2661():7-21. PubMed ID: 37166629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth.
    Lee S; Park D; Lim C; Kim JI; Min KT
    BMC Biol; 2022 Jan; 20(1):12. PubMed ID: 34996455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of uS19 C-Terminal Tail during the Translation Elongation Cycle in Human Ribosomes.
    Bhaskar V; Graff-Meyer A; Schenk AD; Cavadini S; von Loeffelholz O; Natchiar SK; Artus-Revel CG; Hotz HR; Bretones G; Klaholz BP; Chao JA
    Cell Rep; 2020 Apr; 31(1):107473. PubMed ID: 32268098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Messenger RNA delivery to mitoribosomes - hints from a bacterial toxin.
    Bruni F; Proctor-Kent Y; Lightowlers RN; Chrzanowska-Lightowlers ZM
    FEBS J; 2021 Jan; 288(2):437-451. PubMed ID: 32329962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for the translation initiation of leaderless mRNAs by the intact 70 S ribosome without its dissociation into subunits in eubacteria.
    Udagawa T; Shimizu Y; Ueda T
    J Biol Chem; 2004 Mar; 279(10):8539-46. PubMed ID: 14670970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of Cryo-EM for Visualization of Mitoribosomes.
    Singh V; Amunts A
    Methods Mol Biol; 2021; 2192():197-210. PubMed ID: 33230775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryo-EM structure of the RNA-rich plant mitochondrial ribosome.
    Waltz F; Soufari H; Bochler A; Giegé P; Hashem Y
    Nat Plants; 2020 Apr; 6(4):377-383. PubMed ID: 32251374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of the Human Mitochondrial Ribosome Studied In Situ by Cryoelectron Tomography.
    Englmeier R; Pfeffer S; Förster F
    Structure; 2017 Oct; 25(10):1574-1581.e2. PubMed ID: 28867615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structures of the human mitochondrial ribosome in native states of assembly.
    Brown A; Rathore S; Kimanius D; Aibara S; Bai XC; Rorbach J; Amunts A; Ramakrishnan V
    Nat Struct Mol Biol; 2017 Oct; 24(10):866-869. PubMed ID: 28892042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of Human Mitochondrial Translation Initiation Factor 3 Bound to the Small Ribosomal Subunit.
    Koripella RK; Sharma MR; Haque ME; Risteff P; Spremulli LL; Agrawal RK
    iScience; 2019 Feb; 12():76-86. PubMed ID: 30677741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor.
    Spahn CM; Jan E; Mulder A; Grassucci RA; Sarnow P; Frank J
    Cell; 2004 Aug; 118(4):465-75. PubMed ID: 15315759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Late steps in bacterial translation initiation visualized using time-resolved cryo-EM.
    Kaledhonkar S; Fu Z; Caban K; Li W; Chen B; Sun M; Gonzalez RL; Frank J
    Nature; 2019 Jun; 570(7761):400-404. PubMed ID: 31108498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using mitoribosomal profiling to investigate human mitochondrial translation.
    Gao F; Wesolowska M; Agami R; Rooijers K; Loayza-Puch F; Lawless C; Lightowlers RN; Chrzanowska-Lightowlers ZMA
    Wellcome Open Res; 2017; 2():116. PubMed ID: 29387808
    [No Abstract]   [Full Text] [Related]  

  • 38. Schizosaccharomyces pombe Mti2 and Mti3 act in conjunction during mitochondrial translation initiation.
    Luo Y; Su R; Wang Y; Xie W; Liu Z; Huang Y
    FEBS J; 2019 Nov; 286(22):4542-4553. PubMed ID: 31350787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA.
    Ji H; Fraser CS; Yu Y; Leary J; Doudna JA
    Proc Natl Acad Sci U S A; 2004 Dec; 101(49):16990-5. PubMed ID: 15563596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How to build a ribosome from RNA fragments in Chlamydomonas mitochondria.
    Waltz F; Salinas-Giegé T; Englmeier R; Meichel H; Soufari H; Kuhn L; Pfeffer S; Förster F; Engel BD; Giegé P; Drouard L; Hashem Y
    Nat Commun; 2021 Dec; 12(1):7176. PubMed ID: 34887394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.