These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Koistinen VM; Kärkkäinen O; Borewicz K; Zarei I; Jokkala J; Micard V; Rosa-Sibakov N; Auriola S; Aura AM; Smidt H; Hanhineva K Microbiome; 2019 Jul; 7(1):103. PubMed ID: 31291994 [TBL] [Abstract][Full Text] [Related]
43. Oat bran, but not its isolated bioactive β-glucans or polyphenols, have a bifidogenic effect in an in vitro fermentation model of the gut microbiota. Kristek A; Wiese M; Heuer P; Kosik O; Schär MY; Soycan G; Alsharif S; Kuhnle GGC; Walton G; Spencer JPE Br J Nutr; 2019 Mar; 121(5):549-559. PubMed ID: 30688188 [TBL] [Abstract][Full Text] [Related]
44. He X; Sun C; Fang J; Wu C; Zhang Y; Zhang X; Fang Y J Agric Food Chem; 2022 Aug; 70(30):9509-9519. PubMed ID: 35881531 [TBL] [Abstract][Full Text] [Related]
45. Dietary supplementation with fermented Mao-tai lees beneficially affects gut microbiota structure and function in pigs. Li H; Li H; Xie P; Li Z; Yin Y; Blachier F; Kong X AMB Express; 2019 Feb; 9(1):26. PubMed ID: 30778768 [TBL] [Abstract][Full Text] [Related]
46. A Small In Vitro Fermentation Model for Screening the Gut Microbiota Effects of Different Fiber Preparations. Tsitko I; Wiik-Miettinen F; Mattila O; Rosa-Sibakov N; Seppänen-Laakso T; Maukonen J; Nordlund E; Saarela M Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31003566 [TBL] [Abstract][Full Text] [Related]
47. Impact of Grain Sorghum Polyphenols on Microbiota of Normal Weight and Overweight/Obese Subjects during In Vitro Fecal Fermentation. Ashley D; Marasini D; Brownmiller C; Lee JA; Carbonero F; Lee SO Nutrients; 2019 Jan; 11(2):. PubMed ID: 30678168 [TBL] [Abstract][Full Text] [Related]
48. Effect of bioprocessing of wheat bran in wholemeal wheat breads on the colonic SCFA production in vitro and postprandial plasma concentrations in men. Anson NM; Havenaar R; Vaes W; Coulier L; Venema K; Selinheimo E; Bast A; Haenen GR Food Chem; 2011 Sep; 128(2):404-9. PubMed ID: 25212148 [TBL] [Abstract][Full Text] [Related]
49. The source of fermentable carbohydrates influences the in vitro protein synthesis by colonic bacteria isolated from pigs. Bindelle J; Buldgen A; Wavreille J; Agneessens R; Destain JP; Wathelet B; Leterme P Animal; 2007 Sep; 1(8):1126-33. PubMed ID: 22444858 [TBL] [Abstract][Full Text] [Related]
50. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Upadhyaya B; McCormack L; Fardin-Kia AR; Juenemann R; Nichenametla S; Clapper J; Specker B; Dey M Sci Rep; 2016 Jun; 6():28797. PubMed ID: 27356770 [TBL] [Abstract][Full Text] [Related]
51. Dietary fibers differ in their effects on large bowel epithelial proliferation and fecal fermentation-dependent events in rats. Folino M; McIntyre A; Young GP J Nutr; 1995 Jun; 125(6):1521-8. PubMed ID: 7782906 [TBL] [Abstract][Full Text] [Related]
52. Short-chain fatty acid production and fiber degradation by human colonic bacteria: effects of substrate and cell wall fractionation procedures. Bourquin LD; Titgemeyer EC; Garleb KA; Fahey GC J Nutr; 1992 Jul; 122(7):1508-20. PubMed ID: 1320114 [TBL] [Abstract][Full Text] [Related]
53. Associations of gut microbiota, dietary intake, and serum short-chain fatty acids with fecal short-chain fatty acids. Yamamura R; Nakamura K; Kitada N; Aizawa T; Shimizu Y; Nakamura K; Ayabe T; Kimura T; Tamakoshi A Biosci Microbiota Food Health; 2020; 39(1):11-17. PubMed ID: 32010539 [TBL] [Abstract][Full Text] [Related]
54. Effect of dark sweet cherry powder consumption on the gut microbiota, short-chain fatty acids, and biomarkers of gut health in obese db/db mice. Garcia-Mazcorro JF; Lage NN; Mertens-Talcott S; Talcott S; Chew B; Dowd SE; Kawas JR; Noratto GD PeerJ; 2018; 6():e4195. PubMed ID: 29312822 [TBL] [Abstract][Full Text] [Related]
55. Adsorption of a hydrophobic mutagen to cereal brans and cereal bran dietary fibres. Harris PJ; Sasidharan VK; Roberton AM; Triggs CM; Blakeney AB; Ferguson LR Mutat Res; 1998 Feb; 412(3):323-31. PubMed ID: 9600701 [TBL] [Abstract][Full Text] [Related]
56. In vitro fecal fermentation of propionylated high-amylose maize starch and its impact on gut microbiota. Xie Z; Wang S; Wang Z; Fu X; Huang Q; Yuan Y; Wang K; Zhang B Carbohydr Polym; 2019 Nov; 223():115069. PubMed ID: 31426996 [TBL] [Abstract][Full Text] [Related]
57. A comparative study of the influence of differing barley brans on DMH-induced intestinal tumours in male Sprague-Dawley rats. McIntosh GH; Le Leu RK; Royle PJ; Young GP J Gastroenterol Hepatol; 1996 Feb; 11(2):113-9. PubMed ID: 8672754 [TBL] [Abstract][Full Text] [Related]
58. Effect of the particle size of maize, rice, and sorghum in extruded diets for dogs on starch gelatinization, digestibility, and the fecal concentration of fermentation products. Bazolli RS; Vasconcellos RS; de-Oliveira LD; Sá FC; Pereira GT; Carciofi AC J Anim Sci; 2015 Jun; 93(6):2956-66. PubMed ID: 26115282 [TBL] [Abstract][Full Text] [Related]
59. Proteobacteria Overgrowth and Butyrate-Producing Taxa Depletion in the Gut Microbiota of Glycogen Storage Disease Type 1 Patients. Ceccarani C; Bassanini G; Montanari C; Casiraghi MC; Ottaviano E; Morace G; Biasucci G; Paci S; Borghi E; Verduci E Metabolites; 2020 Mar; 10(4):. PubMed ID: 32235604 [TBL] [Abstract][Full Text] [Related]
60. Fermentability of Novel Type-4 Resistant Starches in In Vitro System. Erickson JM; Carlson JL; Stewart ML; Slavin JL Foods; 2018 Feb; 7(2):. PubMed ID: 29389870 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]