These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32523626)

  • 1. Successful muscle regeneration by a homologous microperforated scaffold seeded with autologous mesenchymal stromal cells in a porcine esophageal substitution model.
    Marzaro M; Algeri M; Tomao L; Tedesco S; Caldaro T; Balassone V; Contini AC; Guerra L; Federici D'Abriola G; Francalanci P; Caristo ME; Lupoi L; Boskoski I; Bozza A; Astori G; Pozzato G; Pozzato A; Costamagna G; Dall'Oglio L
    Therap Adv Gastroenterol; 2020; 13():1756284820923220. PubMed ID: 32523626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decellularized esophageal tubular scaffold microperforated by quantum molecular resonance technology and seeded with mesenchymal stromal cells for tissue engineering esophageal regeneration.
    Marzaro M; Pozzato G; Tedesco S; Algeri M; Pozzato A; Tomao L; Montano I; Torroni F; Balassone V; Contini ACI; Guerra L; D'Angelo T; Federici di Abriola G; Lupoi L; Caristo ME; Boškoski I; Costamagna G; Francalanci P; Astori G; Bozza A; Bagno A; Todesco M; Trovalusci E; Oglio LD; Locatelli F; Caldaro T
    Front Bioeng Biotechnol; 2022; 10():912617. PubMed ID: 36267444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Esophageal tissue engineering: a new approach for esophageal replacement.
    Totonelli G; Maghsoudlou P; Fishman JM; Orlando G; Ansari T; Sibbons P; Birchall MA; Pierro A; Eaton S; De Coppi P
    World J Gastroenterol; 2012 Dec; 18(47):6900-7. PubMed ID: 23322987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyurethane scaffolds seeded with autologous cells can regenerate long esophageal gaps: An esophageal atresia treatment model.
    Jensen T; Wanczyk H; Sharma I; Mitchell A; Sayej WN; Finck C
    J Pediatr Surg; 2019 Sep; 54(9):1744-1754. PubMed ID: 30429066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-in-Human Segmental Esophageal Reconstruction Using a Bioengineered Mesenchymal Stromal Cell-Seeded Implant.
    Aho JM; La Francesca S; Olson SD; Triolo F; Bouchard J; Mondano L; Sundaram S; Roffidal C; Cox CS; Wong Kee Song LM; Said SM; Fodor W; Wigle DA
    JTO Clin Res Rep; 2021 Sep; 2(9):100216. PubMed ID: 34590055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term regeneration and remodeling of the pig esophagus after circumferential resection using a retrievable synthetic scaffold carrying autologous cells.
    La Francesca S; Aho JM; Barron MR; Blanco EW; Soliman S; Kalenjian L; Hanson AD; Todorova E; Marsh M; Burnette K; DerSimonian H; Odze RD; Wigle DA
    Sci Rep; 2018 Mar; 8(1):4123. PubMed ID: 29515136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circumferential Esophageal Replacement by a Tissue-engineered Substitute Using Mesenchymal Stem Cells: An Experimental Study in Mini Pigs.
    Catry J; Luong-Nguyen M; Arakelian L; Poghosyan T; Bruneval P; Domet T; Michaud L; Sfeir R; Gottrand F; Larghero J; Vanneaux V; Cattan P
    Cell Transplant; 2017 Dec; 26(12):1831-1839. PubMed ID: 29390879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-Engineered Esophagus via Bioreactor Cultivation for Circumferential Esophageal Reconstruction.
    Kim IG; Wu Y; Park SA; Cho H; Choi JJ; Kwon SK; Shin JW; Chung EJ
    Tissue Eng Part A; 2019 Nov; 25(21-22):1478-1492. PubMed ID: 30799779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circumferential esophageal replacement by a decellularized esophageal matrix in a porcine model.
    Levenson G; Berger A; Demma J; Perrod G; Domet T; Arakelian L; Bruneval P; Broudin C; Jarraya M; Setterblad N; Rahmi G; Larghero J; Cattan P; Faivre L; Poghosyan T
    Surgery; 2022 Feb; 171(2):384-392. PubMed ID: 34392978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model.
    Tan B; Wei RQ; Tan MY; Luo JC; Deng L; Chen XH; Hou JL; Li XQ; Yang ZM; Xie HQ
    J Surg Res; 2013 Jun; 182(1):40-8. PubMed ID: 22925499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aortic valve conduit implantation in the descending thoracic aorta in a sheep model: The outcomes of pre-seeded scaffold.
    Kajbafzadeh AM; Ahmadi Tafti SH; Mokhber-Dezfooli MR; Khorramirouz R; Sabetkish S; Sabetkish N; Rabbani S; Tavana H; Mohseni MJ
    Int J Surg; 2016 Apr; 28():97-105. PubMed ID: 26923632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7.
    Kargozar S; Hashemian SJ; Soleimani M; Milan PB; Askari M; Khalaj V; Samadikuchaksaraie A; Hamzehlou S; Katebi AR; Latifi N; Mozafari M; Baino F
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():688-698. PubMed ID: 28415516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model.
    Zhang ZZ; Wang SJ; Zhang JY; Jiang WB; Huang AB; Qi YS; Ding JX; Chen XS; Jiang D; Yu JK
    Am J Sports Med; 2017 Jun; 45(7):1497-1511. PubMed ID: 28278383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Esophageal Reconstruction via Bioreactor Cultivation of a Synthetic Scaffold in a Canine Model.
    Kim IG; Wu Y; Park SA; Choi JS; Kwon SK; Choi SH; Jung KC; Shin JW; Chung EJ
    Clin Exp Otorhinolaryngol; 2023 May; 16(2):165-176. PubMed ID: 36652920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-engineered artificial oesophagus patch using three-dimensionally printed polycaprolactone with mesenchymal stem cells: a preliminary report.
    Park SY; Choi JW; Park JK; Song EH; Park SA; Kim YS; Shin YS; Kim CH
    Interact Cardiovasc Thorac Surg; 2016 Jun; 22(6):712-7. PubMed ID: 26969739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivation and characterization of porcine vocal fold extracellular matrix scaffold.
    Wrona EA; Peng R; Born H; Amin MR; Branski RC; Freytes DO
    Laryngoscope; 2016 Apr; 126(4):928-35. PubMed ID: 26371887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro development and characterization of a tissue-engineered conduit resembling esophageal wall using human and pig skeletal myoblast, oral epithelial cells, and biologic scaffolds.
    Poghosyan T; Gaujoux S; Vanneaux V; Bruneval P; Domet T; Lecourt S; Jarraya M; Sfeir R; Larghero J; Cattan P
    Tissue Eng Part A; 2013 Oct; 19(19-20):2242-52. PubMed ID: 23672649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffold-based delivery of autologous mesenchymal stem cells for mandibular distraction osteogenesis: preliminary studies in a porcine model.
    Sun Z; Tee BC; Kennedy KS; Kennedy PM; Kim DG; Mallery SR; Fields HW
    PLoS One; 2013; 8(9):e74672. PubMed ID: 24040314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model.
    Yea JH; Bae TS; Kim BJ; Cho YW; Jo CH
    Acta Biomater; 2020 Sep; 114():104-116. PubMed ID: 32682057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of bMSCs on Biocompatible, Biodegradable, and Biomimetic Scaffolds for Largely Defected Tissue Repair.
    Wang X; Jin J; Hou R; Zhou M; Mou X; Xu K; Zhu Y; Shen Z; Zhang X
    ACS Appl Bio Mater; 2020 Jan; 3(1):735-746. PubMed ID: 35019417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.