BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32524060)

  • 1. UAV-based imaging platform for monitoring maize growth throughout development.
    Tirado SB; Hirsch CN; Springer NM
    Plant Direct; 2020 Jun; 4(6):e00230. PubMed ID: 32524060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach.
    Han L; Yang G; Yang H; Xu B; Li Z; Yang X
    Front Plant Sci; 2018; 9():1638. PubMed ID: 30483291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Throughput Field Phenotyping for Plant Height Using UAV-Based RGB Imagery in Wheat Breeding Lines: Feasibility and Validation.
    Volpato L; Pinto F; González-Pérez L; Thompson IG; Borém A; Reynolds M; Gérard B; Molero G; Rodrigues FA
    Front Plant Sci; 2021; 12():591587. PubMed ID: 33664755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuzzy Clustering of Maize Plant-Height Patterns Using Time Series of UAV Remote-Sensing Images and Variety Traits.
    Han L; Yang G; Dai H; Yang H; Xu B; Feng H; Li Z; Yang X
    Front Plant Sci; 2019; 10():926. PubMed ID: 31379905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV).
    Wang X; Zhang R; Song W; Han L; Liu X; Sun X; Luo M; Chen K; Zhang Y; Yang H; Yang G; Zhao Y; Zhao J
    Sci Rep; 2019 Mar; 9(1):3458. PubMed ID: 30837510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining self-organizing maps and biplot analysis to preselect maize phenotypic components based on UAV high-throughput phenotyping platform.
    Han L; Yang G; Dai H; Yang H; Xu B; Li H; Long H; Li Z; Yang X; Zhao C
    Plant Methods; 2019; 15():57. PubMed ID: 31149023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries.
    Haghighattalab A; González Pérez L; Mondal S; Singh D; Schinstock D; Rutkoski J; Ortiz-Monasterio I; Singh RP; Goodin D; Poland J
    Plant Methods; 2016; 12():35. PubMed ID: 27347001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques.
    Buchaillot ML; Gracia-Romero A; Vergara-Diaz O; Zaman-Allah MA; Tarekegne A; Cairns JE; Prasanna BM; Araus JL; Kefauver SC
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30995754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits.
    Shu M; Fei S; Zhang B; Yang X; Guo Y; Li B; Ma Y
    Plant Phenomics; 2022; 2022():9802585. PubMed ID: 36158531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates.
    Madec S; Baret F; de Solan B; Thomas S; Dutartre D; Jezequel S; Hemmerlé M; Colombeau G; Comar A
    Front Plant Sci; 2017; 8():2002. PubMed ID: 29230229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning.
    Dhakal R; Maimaitijiang M; Chang J; Caffe M
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery.
    Zhao B; Zhang J; Yang C; Zhou G; Ding Y; Shi Y; Zhang D; Xie J; Liao Q
    Front Plant Sci; 2018; 9():1362. PubMed ID: 30298081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery.
    Li J; Veeranampalayam-Sivakumar AN; Bhatta M; Garst ND; Stoll H; Stephen Baenziger P; Belamkar V; Howard R; Ge Y; Shi Y
    Plant Methods; 2019; 15():123. PubMed ID: 31695728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography.
    Wu J; Wen S; Lan Y; Yin X; Zhang J; Ge Y
    Plant Methods; 2022 Dec; 18(1):129. PubMed ID: 36482426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of plant-level tomato biomass and yield using machine learning with unmanned aerial vehicle imagery.
    Tatsumi K; Igarashi N; Mengxue X
    Plant Methods; 2021 Jul; 17(1):77. PubMed ID: 34266447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform.
    Hassan MA; Yang M; Rasheed A; Yang G; Reynolds M; Xia X; Xiao Y; He Z
    Plant Sci; 2019 May; 282():95-103. PubMed ID: 31003615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (
    Selvaraj MG; Valderrama M; Guzman D; Valencia M; Ruiz H; Acharjee A
    Plant Methods; 2020; 16():87. PubMed ID: 32549903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Sorghum Plant and Head Features from Multispectral UAV Imagery.
    Zhao Y; Zheng B; Chapman SC; Laws K; George-Jaeggli B; Hammer GL; Jordan DR; Potgieter AB
    Plant Phenomics; 2021; 2021():9874650. PubMed ID: 34676373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice.
    Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y
    Front Plant Sci; 2018; 9():936. PubMed ID: 30034405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning.
    Tian F; Vieira CC; Zhou J; Zhou J; Chen P
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.