These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32524208)

  • 1. Editing of phosphatidic acid and phosphatidylethanolamine by acyl-CoA: lysophospholipid acyltransferases in developing Camelina sativa seeds.
    Klińska S; Jasieniecka-Gazarkiewicz K; Demski K; Banaś A
    Planta; 2020 Jun; 252(1):4. PubMed ID: 32524208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs) of Camelina sativa seeds: biochemical properties and function.
    Klińska S; Jasieniecka-Gazarkiewicz K; Banaś A
    Planta; 2019 Nov; 250(5):1655-1670. PubMed ID: 31407031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LPEATs Tailor Plant Phospholipid Composition through Adjusting Substrate Preferences to Temperature.
    Klińska S; Demski K; Jasieniecka-Gazarkiewicz K; Banaś A
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells.
    Yamashita A; Sugiura T; Waku K
    J Biochem; 1997 Jul; 122(1):1-16. PubMed ID: 9276665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-independent fatty acyl-coenzyme A synthesis from phospholipid: coenzyme A-dependent transacylation activity toward lysophosphatidic acid catalyzed by acyl-coenzyme A:lysophosphatidic acid acyltransferase.
    Yamashita A; Kawagishi N; Miyashita T; Nagatsuka T; Sugiura T; Kume K; Shimizu T; Waku K
    J Biol Chem; 2001 Jul; 276(29):26745-52. PubMed ID: 11352914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical Characterization of Acyl-CoA: Lysophosphatidylcholine Acyltransferase (LPCAT) Enzyme from the Seeds of Salvia hispanica.
    Gopalam R; Datey A; Bijoor S; Chakravortty D; Tumaney AW
    Mol Biotechnol; 2021 Oct; 63(10):963-972. PubMed ID: 34129179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor.
    Tomosugi M; Ichihara K; Saito K
    Planta; 2006 Jan; 223(2):349-58. PubMed ID: 16133210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate selectivity of acyl-CoA:lysolecithin acyltransferase from rabbit lung.
    Estrada P; Acebal C; Arche R
    Mol Cell Biochem; 1985 Nov; 69(1):49-54. PubMed ID: 4079918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Growth Conditions Boost Plant Lipid Remodelling and Influence Their Composition.
    Klińska S; Kędzierska S; Jasieniecka-Gazarkiewicz K; Banaś A
    Cells; 2021 Sep; 10(9):. PubMed ID: 34571973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of an novel acyl-CoA:diacylglycerol acyltransferase 3-3 (CsDGAT3-3) gene from Camelina sativa.
    Gao H; Gao Y; Zhang F; Liu B; Ji C; Xue J; Yuan L; Li R
    Plant Sci; 2021 Feb; 303():110752. PubMed ID: 33487340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a potential bottleneck in branched chain fatty acid incorporation into triacylglycerol for lipid biosynthesis in agronomic plants.
    Nlandu Mputu M; Rhazi L; Vasseur G; Vu TD; Gontier E; Thomasset B
    Biochimie; 2009 Jun; 91(6):703-10. PubMed ID: 19327383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delta 6- and delta 12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage (Borago officinalis).
    Griffiths G; Stobart AK; Stymne S
    Biochem J; 1988 Jun; 252(3):641-7. PubMed ID: 3421914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel lysophospholipid acyltransferase PLAT1 of Aurantiochytrium limacinum F26-b responsible for generation of palmitate-docosahexaenoate-phosphatidylcholine and phosphatidylethanolamine.
    Abe E; Ikeda K; Nutahara E; Hayashi M; Yamashita A; Taguchi R; Doi K; Honda D; Okino N; Ito M
    PLoS One; 2014; 9(8):e102377. PubMed ID: 25090090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver.
    Stymne S; Stobart AK
    Biochem J; 1984 Oct; 223(2):305-14. PubMed ID: 6497849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions.
    Lager I; Yilmaz JL; Zhou XR; Jasieniecka K; Kazachkov M; Wang P; Zou J; Weselake R; Smith MA; Bayon S; Dyer JM; Shockey JM; Heinz E; Green A; Banas A; Stymne S
    J Biol Chem; 2013 Dec; 288(52):36902-14. PubMed ID: 24189065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress on acyl CoA: lysophospholipid acyltransferase research.
    Shindou H; Hishikawa D; Harayama T; Yuki K; Shimizu T
    J Lipid Res; 2009 Apr; 50 Suppl(Suppl):S46-51. PubMed ID: 18931347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand binding to the ACBD6 protein regulates the acyl-CoA transferase reactions in membranes.
    Soupene E; Kuypers FA
    J Lipid Res; 2015 Oct; 56(10):1961-71. PubMed ID: 26290611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid: evidence for functionally separate pools of acyl-CoA.
    Igal RA; Wang P; Coleman RA
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):529-34. PubMed ID: 9182714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus enhances acyl exchange between acyl-CoA and phosphatidylcholine.
    Yurchenko OP; Nykiforuk CL; Moloney MM; Ståhl U; Banaś A; Stymne S; Weselake RJ
    Plant Biotechnol J; 2009 Sep; 7(7):602-10. PubMed ID: 19702754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds.
    Kim HJ; Silva JE; Iskandarov U; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB
    Plant J; 2015 Dec; 84(5):1021-33. PubMed ID: 26505880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.