These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32524265)

  • 1. Exciton effect in new generation of carbon nanotubes: graphdiyne nanotubes.
    Houshmand F; Friedman R; Jalili S; Schofield J
    J Mol Model; 2020 Jun; 26(7):171. PubMed ID: 32524265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphenylene Nanotubes.
    Koch AT; Khoshaman AH; Fan HD; Sawatzky GA; Nojeh A
    J Phys Chem Lett; 2015 Oct; 6(19):3982-7. PubMed ID: 26722903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Many-body effects in semiconducting single-wall silicon nanotubes.
    Wei W; Jacob T
    Beilstein J Nanotechnol; 2014 Jan; 5():19-25. PubMed ID: 24455458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene.
    Shu H; Li Y; Wang S; Wang J
    Phys Chem Chem Phys; 2015 Feb; 17(6):4542-50. PubMed ID: 25583554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A First-Principle Theoretical Study of Mechanical and Electronic Properties in Graphene Single-Walled Carbon Nanotube Junctions.
    Yang N; Yang D; Chen L; Liu D; Cai M; Fan X
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29137203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical properties of two-dimensional zigzag and armchair graphyne nanoribbon semiconductor.
    Asadpour M; Jafari M; Asadpour M; Jafari M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():380-4. PubMed ID: 25576934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-edge structures from first principles all-electron Bethe-Salpeter equation calculations.
    Olovsson W; Tanaka I; Puschnig P; Ambrosch-Draxl C
    J Phys Condens Matter; 2009 Mar; 21(10):104205. PubMed ID: 21817425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon-germanium nanotubes.
    Herrera-Carbajal A; Rodríguez-Lugo V; Hernández-Ávila J; Sánchez-Castillo A
    Phys Chem Chem Phys; 2021 Jun; 23(23):13075-13086. PubMed ID: 34042934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Simulations of (8,0)CNT-Graphene by SCC-DFTB Algorithm.
    Wei L; Zhang L
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Davydov-type excitonic effects on the absorption spectra of parallel-stacked and herringbone aggregates of pentacene: Time-dependent density-functional theory and time-dependent density-functional tight binding.
    Darghouth AAMHM; Correa GC; Juillard S; Casida ME; Humeniuk A; Mitrić R
    J Chem Phys; 2018 Oct; 149(13):134111. PubMed ID: 30292200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitons and Davydov splitting in sexithiophene from first-principles many-body Green's function theory.
    Leng X; Yin H; Liang D; Ma Y
    J Chem Phys; 2015 Sep; 143(11):114501. PubMed ID: 26395713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural, mechanical and electronic properties of nano-fibriform silica and its organic functionalization by dimethyl silane: a SCC-DFTB approach.
    Silva MC; Santos EC; Lourenço MP; Duarte HA
    J Mol Model; 2013 May; 19(5):1995-2005. PubMed ID: 22986473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and electronic properties of α-, β-, γ-, and 6,6,18-graphdiyne sheets and nanotubes.
    Li L; Qiao W; Bai H; Huang Y
    RSC Adv; 2020 Apr; 10(28):16709-16717. PubMed ID: 35498857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon-doping in carbon nanotubes: formation energies, electronic structures, and chemical reactivity.
    Bian R; Zhao J; Fu H
    J Mol Model; 2013 Apr; 19(4):1667-75. PubMed ID: 23292251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energies Exploration for the Troponine Molecule Supported on Carbon Nanomaterials: DFT Study.
    Duque-Ossa LC; Reyes-Retana JA
    ACS Omega; 2023 Apr; 8(13):12334-12338. PubMed ID: 37033851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density Functional Theory-Based Studies Predict Carbon Nanotubes as Effective Mycolactone Inhibitors.
    Suleiman N; Yaya A; Wilson MD; Aryee S; Kwofie SK
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach.
    Bieniek M; Sadecka K; Szulakowska L; Hawrylak P
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Stabilization of Carbynes Encapsulated in Penta-Graphene Nanotubes: a DFT Study.
    Rocha RA; Santos RBD; Júnior LAR; Aguiar AL
    J Mol Model; 2021 Oct; 27(11):318. PubMed ID: 34633553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.