BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32524442)

  • 1. Assessing the fit of 3D printed bolus from CT, optical scanner and photogrammetry methods.
    Maxwell SK; Charles PH; Cassim N; Kairn T; Crowe SB
    Phys Eng Sci Med; 2020 Jun; 43(2):601-607. PubMed ID: 32524442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner.
    Dipasquale G; Poirier A; Sprunger Y; Uiterwijk JWE; Miralbell R
    Radiat Oncol; 2018 Oct; 13(1):203. PubMed ID: 30340612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of consumer smartphones for generating bolus and surface mould applicators for radiation oncology.
    Bridger CA; Caraça Santos AM; Reich PD; Douglass MJJ
    Med Phys; 2024 Jun; 51(6):4447-4457. PubMed ID: 38709978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner.
    Park JW; Oh SA; Yea JW; Kang MK
    PLoS One; 2017; 12(5):e0177562. PubMed ID: 28494012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dosimetric comparison of CT- and photogrammetry- generated 3D printed HDR brachytherapy surface applicators.
    Bridger CA; Reich PD; Caraça Santos AM; Douglass MJJ
    Phys Eng Sci Med; 2022 Mar; 45(1):125-134. PubMed ID: 35020174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of optical photogrammetry in radiation oncology: HDR surface mold brachytherapy.
    Douglass MJJ; Caraça Santos AM
    Brachytherapy; 2019; 18(5):689-700. PubMed ID: 31230942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Workload implications for clinic workflow with implementation of three-dimensional printed customized bolus for radiation therapy: A pilot study.
    Ehler E; Sterling D; Dusenbery K; Lawrence J
    PLoS One; 2018; 13(10):e0204944. PubMed ID: 30273403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical note: Evaluation of a silicone-based custom bolus for radiation therapy of a superficial pelvic tumor.
    Wang KM; Rickards AJ; Bingham T; Tward JD; Price RG
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13538. PubMed ID: 35084098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed boluses for radiotherapy: influence of geometrical and printing parameters on dosimetric characterization and air gap evaluation.
    Gugliandolo SG; Pillai SP; Rajendran S; Vincini MG; Pepa M; Pansini F; Zaffaroni M; Marvaso G; Alterio D; Vavassori A; Durante S; Volpe S; Cattani F; Jereczek-Fossa BA; Moscatelli D; Colosimo BM
    Radiol Phys Technol; 2024 Jun; 17(2):347-359. PubMed ID: 38351260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrapatient study comparing 3D printed bolus versus standard vinyl gel sheet bolus for postmastectomy chest wall radiation therapy.
    Robar JL; Moran K; Allan J; Clancey J; Joseph T; Chytyk-Praznik K; MacDonald RL; Lincoln J; Sadeghi P; Rutledge R
    Pract Radiat Oncol; 2018; 8(4):221-229. PubMed ID: 29452866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of camera settings for photogrammetric reconstruction of humanoid phantoms for EBRT bolus and HDR surface brachytherapy applications.
    Bridger CA; Douglass MJJ; Reich PD; Santos AMC
    Phys Eng Sci Med; 2021 Jun; 44(2):457-471. PubMed ID: 33844156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating 3D-printed Bolus Compared to Conventional Bolus Types Used in External Beam Radiation Therapy.
    McCallum S; Maresse S; Fearns P
    Curr Med Imaging; 2021; 17(7):820-831. PubMed ID: 33530912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can optical scanning technologies replace CT for 3D printed medical devices in radiation oncology?
    Douglass MJJ
    J Med Radiat Sci; 2022 Jun; 69(2):139-142. PubMed ID: 35366049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dosimetric study on the use of 3D-printed customized boluses in photon therapy: A hydrogel and silica gel study.
    Kong Y; Yan T; Sun Y; Qian J; Zhou G; Cai S; Tian Y
    J Appl Clin Med Phys; 2019 Jan; 20(1):348-355. PubMed ID: 30402935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology.
    Tran-Gia J; Schlögl S; Lassmann M
    J Nucl Med; 2016 Dec; 57(12):1998-2005. PubMed ID: 27445291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical applications of 3-dimensional printing in radiation therapy.
    Zhao Y; Moran K; Yewondwossen M; Allan J; Clarke S; Rajaraman M; Wilke D; Joseph P; Robar JL
    Med Dosim; 2017 Summer; 42(2):150-155. PubMed ID: 28495033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A customized bolus produced using a 3-dimensional printer for radiotherapy.
    Kim SW; Shin HJ; Kay CS; Son SH
    PLoS One; 2014; 9(10):e110746. PubMed ID: 25337700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional printed customized bolus: adapting to the shape of the outer ear.
    Gomez G; Baeza M; Mateos JC; Rivas JA; Simon FJL; Ortega DM; de Los Ángeles Flores Carrión M; Del Campo ER; Gómez-Cía T; Guerra JLL
    Rep Pract Oncol Radiother; 2021; 26(2):211-217. PubMed ID: 34211771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a pediatric torso phantom with multiple tissues represented using a dual nozzle thermoplastic 3D printer.
    Mille MM; Griffin KT; Maass-Moreno R; Lee C
    J Appl Clin Med Phys; 2020 Nov; 21(11):226-236. PubMed ID: 33073922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed bolus improves dose distribution for veterinary patients treated with photon beam radiation therapy.
    Martin TW; Boss MK; LaRue SM; Leary D
    Can Vet J; 2020 Jun; 61(6):638-644. PubMed ID: 32675816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.