These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32524551)

  • 1. Production of KRIT1-knockout and KRIT1-knockin Mouse Embryonic Fibroblasts as Cellular Models of CCM Disease.
    Goitre L; Fornelli C; Zotta A; Perrelli A; Retta SF
    Methods Mol Biol; 2020; 2152():151-167. PubMed ID: 32524551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Genes and Mechanisms to Molecular-Targeted Therapies: The Long Climb to the Cure of Cerebral Cavernous Malformation (CCM) Disease.
    Retta SF; Perrelli A; Trabalzini L; Finetti F
    Methods Mol Biol; 2020; 2152():3-25. PubMed ID: 32524540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease.
    Antognelli C; Trapani E; Delle Monache S; Perrelli A; Daga M; Pizzimenti S; Barrera G; Cassoni P; Angelucci A; Trabalzini L; Talesa VN; Goitre L; Retta SF
    Free Radic Biol Med; 2018 Feb; 115():202-218. PubMed ID: 29170092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KRIT1: A Traffic Warden at the Busy Crossroads Between Redox Signaling and the Pathogenesis of Cerebral Cavernous Malformation Disease.
    Perrelli A; Ferraris C; Berni E; Glading AJ; Retta SF
    Antioxid Redox Signal; 2023 Mar; 38(7-9):496-528. PubMed ID: 36047808
    [No Abstract]   [Full Text] [Related]  

  • 5. Generation of Cerebral Cavernous Malformation in Neonatal Mouse Models Using Inducible Cre-LoxP Strategy.
    Choi JP; Zheng X
    Methods Mol Biol; 2020; 2152():253-258. PubMed ID: 32524557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defective autophagy is a key feature of cerebral cavernous malformations.
    Marchi S; Corricelli M; Trapani E; Bravi L; Pittaro A; Delle Monache S; Ferroni L; Patergnani S; Missiroli S; Goitre L; Trabalzini L; Rimessi A; Giorgi C; Zavan B; Cassoni P; Dejana E; Retta SF; Pinton P
    EMBO Mol Med; 2015 Nov; 7(11):1403-17. PubMed ID: 26417067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphisms in genes related to oxidative stress and inflammation: Emerging links with the pathogenesis and severity of Cerebral Cavernous Malformation disease.
    Perrelli A; Retta SF
    Free Radic Biol Med; 2021 Aug; 172():403-417. PubMed ID: 34175437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KRIT1 loss-mediated upregulation of NOX1 in stromal cells promotes paracrine pro-angiogenic responses.
    Finetti F; Schiavo I; Ercoli J; Zotta A; Boda E; Retta SF; Trabalzini L
    Cell Signal; 2020 Apr; 68():109527. PubMed ID: 31917192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin.
    Retta SF; Glading AJ
    Int J Biochem Cell Biol; 2016 Dec; 81(Pt B):254-270. PubMed ID: 27639680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun.
    Goitre L; De Luca E; Braggion S; Trapani E; Guglielmotto M; Biasi F; Forni M; Moglia A; Trabalzini L; Retta SF
    Free Radic Biol Med; 2014 Mar; 68(100):134-47. PubMed ID: 24291398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KRIT1 Deficiency Promotes Aortic Endothelial Dysfunction.
    Vieceli Dalla Sega F; Mastrocola R; Aquila G; Fortini F; Fornelli C; Zotta A; Cento AS; Perrelli A; Boda E; Pannuti A; Marchi S; Pinton P; Ferrari R; Rizzo P; Retta SF
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31590384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of Cerebral Endothelial Cells from CCM1/KRIT1 Null Mouse Brain.
    Nobiletti N; Glading AJ
    Methods Mol Biol; 2020; 2152():259-265. PubMed ID: 32524558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single-center study on 140 patients with cerebral cavernous malformations: 28 new pathogenic variants and functional characterization of a PDCD10 large deletion.
    Nardella G; Visci G; Guarnieri V; Castellana S; Biagini T; Bisceglia L; Palumbo O; Trivisano M; Vaira C; Scerrati M; Debrasi D; D'Angelo V; Carella M; Merla G; Mazza T; Castori M; D'Agruma L; Fusco C
    Hum Mutat; 2018 Dec; 39(12):1885-1900. PubMed ID: 30161288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel CCM1 (KRIT1) Mutation Detection in Brazilian Familial Cerebral Cavernous Malformation: Different Genetic Variants in Inflammation, Oxidative Stress, and Drug Metabolism Genes Affect Disease Aggressiveness.
    Fontes-Dantas FL; da Fontoura Galvão G; Veloso da Silva E; Alves-Leon S; Cecília da Silva Rêgo C; Garcia DG; Marques SA; Blanco Martinez AM; Reis da Silva M; Marcondes de Souza J
    World Neurosurg; 2020 Jun; 138():535-540.e8. PubMed ID: 32113992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First Report of Concomitant Pathogenic Mutations Within MGC4607/CCM2 and KRIT1/CCM1 in a Familial Cerebral Cavernous Malformation Patient.
    da Fontoura Galvão G; Veloso da Silva E; Fontes-Dantas FL; Filho RC; Alves-Leon S; Marcondes de Souza J
    World Neurosurg; 2020 Oct; 142():481-486.e1. PubMed ID: 32615293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput sequencing of the entire genomic regions of CCM1/KRIT1, CCM2 and CCM3/PDCD10 to search for pathogenic deep-intronic splice mutations in cerebral cavernous malformations.
    Rath M; Jenssen SE; Schwefel K; Spiegler S; Kleimeier D; Sperling C; Kaderali L; Felbor U
    Eur J Med Genet; 2017 Sep; 60(9):479-484. PubMed ID: 28645800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel CCM1/KRIT1 heterozygous deletion mutation (c.1919delT) in a Chinese family with familial cerebral cavernous malformation.
    Yang C; Wu B; Zhong H; Li Y; Zheng X; Xu Y
    Clin Neurol Neurosurg; 2018 Jan; 164():44-46. PubMed ID: 29169046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease.
    McDonald DA; Shenkar R; Shi C; Stockton RA; Akers AL; Kucherlapati MH; Kucherlapati R; Brainer J; Ginsberg MH; Awad IA; Marchuk DA
    Hum Mol Genet; 2011 Jan; 20(2):211-22. PubMed ID: 20940147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence Analysis of Reactive Oxygen Species (ROS) in Cellular Models of Cerebral Cavernous Malformation Disease.
    Perrelli A; Retta SF
    Methods Mol Biol; 2020; 2152():451-465. PubMed ID: 32524573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations.
    Lopez-Ramirez MA; Fonseca G; Zeineddine HA; Girard R; Moore T; Pham A; Cao Y; Shenkar R; de Kreuk BJ; Lagarrigue F; Lawler J; Glass CK; Awad IA; Ginsberg MH
    J Exp Med; 2017 Nov; 214(11):3331-3346. PubMed ID: 28970240
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.