BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32525053)

  • 1. Hierarchical biofabrication of biomimetic collagen-elastin vascular grafts with controllable properties via lyophilisation.
    Ryan AJ; Ryan EJ; Cameron AR; O'Brien FJ
    Acta Biomater; 2020 Aug; 112():52-61. PubMed ID: 32525053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering.
    Nguyen TU; Shojaee M; Bashur CA; Kishore V
    Biofabrication; 2018 Nov; 11(1):015007. PubMed ID: 30411718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic crimped/aligned microstructure to optimize the mechanics of fibrous hybrid materials for compliant vascular grafts.
    Beachley V; Kuo J; Kasyanov V; Mironov V; Wen X
    J Mech Behav Biomed Mater; 2024 Feb; 150():106301. PubMed ID: 38141364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts.
    Huling J; Ko IK; Atala A; Yoo JJ
    Acta Biomater; 2016 Mar; 32():190-197. PubMed ID: 26772527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.
    Ryan AJ; O'Brien FJ
    Biomaterials; 2015 Dec; 73():296-307. PubMed ID: 26431909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled fabrication of triple layered and molecularly defined collagen/elastin vascular grafts resembling the native blood vessel.
    Koens MJ; Faraj KA; Wismans RG; van der Vliet JA; Krasznai AG; Cuijpers VM; Jansen JA; Daamen WF; van Kuppevelt TH
    Acta Biomater; 2010 Dec; 6(12):4666-74. PubMed ID: 20619367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular replacement using a layered elastin-collagen vascular graft in a porcine model: one week patency versus one month occlusion.
    Koens MJ; Krasznai AG; Hanssen AE; Hendriks T; Praster R; Daamen WF; van der Vliet JA; van Kuppevelt TH
    Organogenesis; 2015; 11(3):105-21. PubMed ID: 26060888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofabrication of small diameter tissue-engineered vascular grafts.
    Weekes A; Bartnikowski N; Pinto N; Jenkins J; Meinert C; Klein TJ
    Acta Biomater; 2022 Jan; 138():92-111. PubMed ID: 34781026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties.
    Mi HY; Jiang Y; Jing X; Enriquez E; Li H; Li Q; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():241-249. PubMed ID: 30813024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts.
    Montini-Ballarin F; Calvo D; Caracciolo PC; Rojo F; Frontini PM; Abraham GA; V Guinea G
    J Mech Behav Biomed Mater; 2016 Jul; 60():220-233. PubMed ID: 26872337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Biomimetic Approach Utilizing Pulsatile Perfusion Generates Contractile Vascular Grafts.
    Knox C; Garcia K; Tran J; Wilson SM; Blood AB; Kearns-Jonker M; Martens TP
    Tissue Eng Part A; 2023 Jul; 29(13-14):358-371. PubMed ID: 37071180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Vascular Grafts with Multiphase Structures.
    James BD; Allen JB
    Methods Mol Biol; 2022; 2375():115-124. PubMed ID: 34591303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique.
    Wang W; Nie W; Zhou X; Feng W; Chen L; Zhang Q; You Z; Shi Q; Peng C; He C
    Acta Biomater; 2018 Oct; 79():168-181. PubMed ID: 30121374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-composites reinforced with unique coral collagen fibers: Towards biomimetic-based small diameter vascular grafts.
    Wertheimer S; Sharabi M; Shelah O; Lesman A; Haj-Ali R
    J Mech Behav Biomed Mater; 2021 Jul; 119():104526. PubMed ID: 33894525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of an elastic decellularized tendon-derived scaffold for the vascular tissue engineering application.
    Ghazanfari S; Alberti KA; Xu Q; Khademhosseini A
    J Biomed Mater Res A; 2019 Jun; 107(6):1225-1234. PubMed ID: 30684384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprinting for vascular and vascularized tissue biofabrication.
    Datta P; Ayan B; Ozbolat IT
    Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tri-layered vascular grafts composed of polycaprolactone, elastin, collagen, and silk: Optimization of graft properties.
    McClure MJ; Simpson DG; Bowlin GL
    J Mech Behav Biomed Mater; 2012 Jun; 10():48-61. PubMed ID: 22520418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly compliant biomimetic scaffolds for small diameter tissue-engineered vascular grafts (TEVGs) produced via melt electrowriting (MEW).
    Weekes A; Wehr G; Pinto N; Jenkins J; Li Z; Meinert C; Klein TJ
    Biofabrication; 2023 Dec; 16(1):. PubMed ID: 37992322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs.
    Mekhileri NV; Lim KS; Brown GCJ; Mutreja I; Schon BS; Hooper GJ; Woodfield TBF
    Biofabrication; 2018 Jan; 10(2):024103. PubMed ID: 29199637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospinning collagen and elastin: preliminary vascular tissue engineering.
    Boland ED; Matthews JA; Pawlowski KJ; Simpson DG; Wnek GE; Bowlin GL
    Front Biosci; 2004 May; 9():1422-32. PubMed ID: 14977557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.