These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 32525079)
1. Prediction of the enhanced insulin absorption across a triple co-cultured intestinal model using mucus penetrating PLGA nanoparticles. Jaradat A; Macedo MH; Sousa F; Arkill K; Alexander C; Aylott J; Sarmento B Int J Pharm; 2020 Jul; 585():119516. PubMed ID: 32525079 [TBL] [Abstract][Full Text] [Related]
2. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. Shan W; Zhu X; Liu M; Li L; Zhong J; Sun W; Zhang Z; Huang Y ACS Nano; 2015 Mar; 9(3):2345-56. PubMed ID: 25658958 [TBL] [Abstract][Full Text] [Related]
3. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. Sheng J; Han L; Qin J; Ru G; Li R; Wu L; Cui D; Yang P; He Y; Wang J ACS Appl Mater Interfaces; 2015 Jul; 7(28):15430-41. PubMed ID: 26111015 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of CSK-DEX-PLGA Nanoparticles for the Oral Delivery of Exenatide to Improve Its Mucus Penetration and Intestinal Absorption. Song Y; Shi Y; Zhang L; Hu H; Zhang C; Yin M; Chu L; Yan X; Zhao M; Zhang X; Mu H; Sun K Mol Pharm; 2019 Feb; 16(2):518-532. PubMed ID: 30601014 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer. Ahmad N; Alam MA; Ahmad R; Naqvi AA; Ahmad FJ Artif Cells Nanomed Biotechnol; 2018 Mar; 46(2):432-446. PubMed ID: 28503995 [TBL] [Abstract][Full Text] [Related]
6. Improved oral delivery of insulin by PLGA nanoparticles coated with 5 Wang W; Yu C; Zhang F; Li Y; Zhang B; Huang J; Zhang Z; Jin L Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34571498 [TBL] [Abstract][Full Text] [Related]
7. Novel PLGA-based nanoparticles for the oral delivery of insulin. Malathi S; Nandhakumar P; Pandiyan V; Webster TJ; Balasubramanian S Int J Nanomedicine; 2015; 10():2207-18. PubMed ID: 25848248 [TBL] [Abstract][Full Text] [Related]
8. Uniform carboxymethyl chitosan-enveloped Pluronic F68/poly(lactic-co-glycolic acid) nano-vehicles for facilitated oral delivery of gefitinib, a poorly soluble antitumor compound. Wang J; Wang F; Li X; Zhou Y; Wang H; Zhang Y Colloids Surf B Biointerfaces; 2019 May; 177():425-432. PubMed ID: 30798063 [TBL] [Abstract][Full Text] [Related]
9. Insulin-loaded PLGA nanoparticles for oral administration: an in vitro physico-chemical characterization. Santander-Ortega MJ; Bastos-González D; Ortega-Vinuesa JL; Alonso MJ J Biomed Nanotechnol; 2009 Feb; 5(1):45-53. PubMed ID: 20055105 [TBL] [Abstract][Full Text] [Related]
10. Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking Through Dual Barriers of the Mucus Layer and the Intestinal Epithelium. Zhang Y; Xiong M; Ni X; Wang J; Rong H; Su Y; Yu S; Mohammad IS; Leung SSY; Hu H ACS Appl Mater Interfaces; 2021 Apr; 13(15):18077-18088. PubMed ID: 33830730 [TBL] [Abstract][Full Text] [Related]
11. Oral insulin delivery, the challenge to increase insulin bioavailability: Influence of surface charge in nanoparticle system. Czuba E; Diop M; Mura C; Schaschkow A; Langlois A; Bietiger W; Neidl R; Virciglio A; Auberval N; Julien-David D; Maillard E; Frere Y; Marchioni E; Pinget M; Sigrist S Int J Pharm; 2018 May; 542(1-2):47-55. PubMed ID: 29501738 [TBL] [Abstract][Full Text] [Related]
12. Design of PLGA nanoparticles for sustained release of hydroxyl-FK866 by microfluidics. Bai X; Tang S; Butterworth S; Tirella A Biomater Adv; 2023 Nov; 154():213649. PubMed ID: 37820459 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of polylactic-co-glycolic acid/insulin nanoparticles encapsulated in methacrylate coated gelatin with sustained release for specific medical applications. Akhavan Farid E; Davachi SM; Pezeshki-Modaress M; Taranejoo S; Seyfi J; Hejazi I; Tabatabaei Hakim M; Najafi F; D'Amico C; Abbaspourrad A J Biomater Sci Polym Ed; 2020 May; 31(7):910-937. PubMed ID: 32009574 [TBL] [Abstract][Full Text] [Related]
14. Oral delivery system for low molecular weight protamine-dextran-poly(lactic-co-glycolic acid) carrying exenatide to overcome the mucus barrier and improve intestinal targeting efficiency. Song Y; Shi Y; Zhang L; Hu H; Zhang C; Yin M; Zhang X; Sun K Nanomedicine (Lond); 2019 Apr; 14(8):989-1009. PubMed ID: 31088322 [No Abstract] [Full Text] [Related]
16. In vitro degradation of poly (D, L-lactide-co-glycolide) nanoparticles loaded with linamarin. Hussein AS; Abdullah N; Ahmadun FR IET Nanobiotechnol; 2013 Jun; 7(2):33-41. PubMed ID: 24046903 [TBL] [Abstract][Full Text] [Related]
17. PLGA Nanoparticle Platform for Trans-Ocular Barrier to Enhance Drug Delivery: A Comparative Study Based on the Application of Oligosaccharides in the Outer Membrane of Carriers. Jiang G; Jia H; Qiu J; Mo Z; Wen Y; Zhang Y; Wen Y; Xie Q; Ban J; Lu Z; Chen Y; Wu H; Ni Q; Chen F; Lu J; Wang Z; Li H; Chen J Int J Nanomedicine; 2020; 15():9373-9387. PubMed ID: 33262593 [TBL] [Abstract][Full Text] [Related]
18. An overview of gastrointestinal mucus rheology under different pH conditions and introduction to pH-dependent rheological interactions with PLGA and chitosan nanoparticles. Ruiz-Pulido G; Medina DI Eur J Pharm Biopharm; 2021 Feb; 159():123-136. PubMed ID: 33387633 [TBL] [Abstract][Full Text] [Related]
19. [Enhancement of gastrointestinal absorption of chitosan-coated insulin-loaded poly (lactic-co-glycolic acid) nanoparticles]. Pan Y; Li YJ; Gao P; Ding PT; Xu H; Zheng JM Yao Xue Xue Bao; 2003 Jun; 38(6):467-70. PubMed ID: 14513811 [TBL] [Abstract][Full Text] [Related]